82,966 research outputs found
New multi-channel electron energy analyzer with cylindrically symmetrical electrostatic field
This paper discusses an electron energy analyzer with a cylindrically
symmetrical electrostatic field, designed for rapid Auger analysis. The device
was designed and built. The best parameters of the analyzer were estimated and
then experimentally verified.Comment: 5 pages, 4 figure
Quantum saturation and condensation of excitons in CuO: a theoretical study
Recent experiments on high density excitons in CuO provide evidence for
degenerate quantum statistics and Bose-Einstein condensation of this nearly
ideal gas. We model the time dependence of this bosonic system including
exciton decay mechanisms, energy exchange with phonons, and interconversion
between ortho (triplet-state) and para (singlet-state) excitons, using
parameters for the excitonic decay, the coupling to acoustic and low-lying
optical phonons, Auger recombination, and ortho-para interconversion derived
from experiment. The single adjustable parameter in our model is the
optical-phonon cooling rate for Auger and laser-produced hot excitons. We show
that the orthoexcitons move along the phase boundary without crossing it (i.e.,
exhibit a ``quantum saturation''), as a consequence of the balance of entropy
changes due to cooling of excitons by phonons and heating by the non-radiative
Auger two-exciton recombination process. The Auger annihilation rate for
para-para collisions is much smaller than that for ortho-para and ortho-ortho
collisions, explaining why, under the given experimental conditions, the
paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex,
figures available from G. Kavoulakis, Physics Department, University of
Illinois, Urban
Studying the nuclear mass composition of Ultra-High Energy Cosmic Rays with the Pierre Auger Observatory
The Fluorescence Detector of the Pierre Auger Observatory measures the
atmospheric depth, , where the longitudinal profile of the high energy
air showers reaches its maximum. This is sensitive to the nuclear mass
composition of the cosmic rays. Due to its hybrid design, the Pierre Auger
Observatory also provides independent experimental observables obtained from
the Surface Detector for the study of the nuclear mass composition. We present
-distributions and an update of the average and RMS values in
different energy bins and compare them to the predictions for different nuclear
masses of the primary particles and hadronic interaction models. We also
present the results of the composition-sensitive parameters derived from the
ground level component.Comment: Proceedings of the 12th International Conference on Topics in
Astroparticle and Underground Physics, TAUP 2011, Munich, German
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Auger electron angular distributions following excitation or ionization of the I 3d level in methyl iodide
Auger electron spectra following excitation or ionization of the I 3d level in CH3I have been recorded with horizontally or vertically plane polarized synchrotron radiation. These spectra have enabled the Auger electron angular distributions, as characterized by the β parameter, to be determined. The I 3d photoionization partial cross section of CH3I has been calculated with the continuum multiple scattering approach, and the results show that in the photon energy range over which Auger spectra were measured, the I 3d cross section exhibits an atomic-like behavior and is dominated by transitions into the εf continuum channel. In this limit, the theoretical value of the alignment parameter (A20) characterizing the core ionized state in an atom becomes constant, independent of photon energy. This theoretical value has been used to obtain the Auger electron intrinsic anisotropy parameters (α2) from the β parameters extracted from our normal (non-resonant) molecular Auger spectra. The resulting anisotropy parameters for the M45N45N45 transitions in CH3I have been compared to those calculated for the corresponding transitions in xenon, and the experimental and theoretical results are in good agreement. Anisotropy parameters have also been measured for the M45N1N45, M45N23N45, and M45N45O23 transitions. For the M45N1N45 and M45N23N45 Auger decays in CH3I, the experimentally derived angular distributions do not exhibit the strong dependence on the final ionic state that is predicted for these transitions in xenon. Resonantly excited Auger spectra have been recorded at 620.4 and 632.0 eV, coinciding with the I 3d5/2 → σ* and 3d3/2 → σ* transitions, respectively. The resulting Auger electron angular distributions for the M4N45N45 and M5N45N45 decays were found to exhibit a higher anisotropy than those for the normal process. This is due to the larger photo-induced alignment in the neutral core excited state. For a particular Auger transition, the Auger electron kinetic energy measured in the resonantly excited spectrum is higher than that in the normal spectrum. This shift, due to the screening provided by the electron excited into the σ* orbital, has been rationalized by calculating orbital ionization energies of I 3d excited and I 3d ionized states in CH3I
Interactions of Ar(9+) and metastable Ar(8+) with a Si(100) surface at velocities near the image acceleration limit
Auger LMM spectra and preliminary model simulations of Ar(9+) and metastable
Ar(8+) ions interacting with a clean monocrystalline n-doped Si(100) surface
are presented. By varying the experimental parameters, several yet undiscovered
spectroscopic features have been observed providing valuable hints for the
development of an adequate interaction model. On our apparatus the ion beam
energy can be lowered to almost mere image charge attraction. High data
acquisition rates could still be maintained yielding an unprecedented
statistical quality of the Auger spectra.Comment: 34 pages, 11 figures, http://pikp28.uni-muenster.de/~ducree
- …
