82 research outputs found

    Fault Zone Resistivity Structure and Monitoring at the Taiwan Chelungpu Drilling Project (TCDP)

    Full text link
    The Taiwan Chelungpu-fault drilling project (TCDP) has undertaken scientific drilling and directly sampled the sub-surface rupture of the 1999 Chi-Chi earthquake. Audio-magnetotelluric (AMT) measurements were used to investigate electrical resistivity structure at the TCDP site from 2004 - 2006. These data show a geoelectric strike direction of N15°E to N30°E. Inversion and forward modeling of the AMT data were used to generate a 1-D resistivity model that has a prominent low resistivity zone (< 10 ohm-m) between depths of 1100 and 1500 m. When combined with porosity measurements, theAMT measurements imply that the ground water has a resistivity of 0.55 ohm-m at the depth of the fault zone

    Integrated interpretation of geophysical data from Zagros mountain belt (Iran)

    Get PDF
    Fluid composition and distribution, the key factors determining geoelectric structure in a seismically active region, are controlled by local and regional stresses and rheological contrasts. In the central Zagros collision zone, one of the world's most seismically active mountain belt, almost coincident magnetotelluric and seismic velocity profiles are jointly interpreted to recover more accurately structural boundaries and fluid distribution within the crust. A multi-site and multi-frequency approach was used for the strike analysis of regional structure and decomposition of distortion effects on magnetotelluric data. Distortion corrected magnetotelluric data were then used for two- dimensional inversion modeling. The results image a thick conductive overburden in the southwest of the profile, high conductivities attributed to the fault zone conductors (FZCs) and an almost concave conductor extending from middle to lower crust in the central- eastern portion of the mountain belt, beneath the High Zagros (HZ). Comparison with the already available S- velocity structure, obtained by joint inversion of P-wave receiver functions and surface wave dispersion data, shows that these main conductive features are spatially correlated with a low-velocity layer representative of the sedimentary cover overlying the Arabian platform and a velocity contrast bounded by the main Zagros thrust (MZT) fault, indicating the presence of fault zone fluids. The joint interpretation of magnetotelluric inverse modeling and seismicity data also shed light on fluid generation influencing rock deformation and seismicity in this region. It suggests that beneath the HZ, deep crustal fluids generated through metamorphism may promote aseismic deformations before high stresses are buildup and cause the north- eastern part of the Zagros Fold and Thrust Belt (ZFTB) to be seismically inactive compared to its south- western part

    Geophysical and geological characterization of fault-controlled geothermal systems: The Vallès Basin case of study

    Get PDF
    [eng] Geothermal energy is a renewable source of energy that harnesses heat from the Earth's interior. Temperature increases with depth, defining the geothermal gradient, which can be variable depending on the geological context. The geological setting of western Europe favors a relatively high geothermal gradient that could be exploited to generate electricity or for its direct use, for example, for its application in industry, greenhouses, or heating systems. In each of these cases, geothermal could favor the community's energy independence and reduce the use of polluting energy sources. To appropriately exploit areas with a significant geothermal gradient, it is essential to know the origin of the temperature anomaly and the system's functioning. In this context, developing appropriate exploration methodologies and techniques is essential for its adequate and efficient use. This thesis develops a methodology focused on a geothermal system type characterized by being located in highly fractured zones. These fractures connect the surface with great depths, allowing the rapid ascent of deep fluids at high temperatures without giving them time to cool down. Specifically, this thesis applies this methodology to a study case located in the Vallès Basin, close to Barcelona city (NE Iberian Peninsula), where some localities, such as La Garriga and Caldes de Montbui towns, have thermal hot springs (60ºC and 70ºC, respectively). In particular, the methodology applied to study the Vallès Basin geothermal fractured system, is focused on two main cores, geophysical and geological techniques. Geophysical methods allow the characterization of the subsurface physical properties, reaching great depths without having to drill. For example, if the physical characteristics of the subsurface have enough contrast, they could allow distinguishing between different types of rocks, fractured zones, or if there is any fluid circulation. However, the geophysical results have to be complemented with other geoscientific studies in order to make a proper interpretation. In this case, this thesis includes a characterization of the area's geology, fracturing, and hydrology. Finally, the integration of the applied techniques has allowed the understanding of the origin and system's functioning, which is presented in the form of a 3D conceptual model, geological model, and temperature model. This innovative methodology, which integrates different geoscientific techniques at different scales, combining traditional techniques with novel digital tools, has facilitated the characterization of a geothermal system controlled by geological structures. Therefore, it is established as a methodical option to characterize systems of similar origin.[cat] La Geotèrmia és una font renovable d'energia que aprofita la temperatura de l'interior de la Terra. El grau en què aquesta temperatura augmenta en profunditat, ve definint pel gradient geotèrmic, el qual pot ser variable segons el context geològic. La geologia de la regió oest del continent europeu afavoreix un gradient geotèrmic relativament alt que podria ser aprofitat per generar electricitat o per a ús directe, com és el cas d'aplicacions en indústria, hivernacles o sistemes de calefacció. En qualsevol cas, la geotèrmia podria afavorir la independència energètica i una disminució en l’ús de fonts d’energia contaminants. Per a un aprofitament d'aquestes zones amb un gradient geotèrmic significatiu, és essencial conèixer-ne l'origen i el funcionament. En aquest context, és basic desenvolupar metodologies d'exploració que siguin adequades i eficients. Aquesta tesis desenvolupa una metodologia aplicada a un exemple de sistema geotèrmic caracteritzat per estar ubicat en una zona molt fracturada. Aquestes fractures connecten la superfície amb grans profunditats, permetent l'ascens ràpid de fluids profunds que es troben a temperatures altes, sense que els doni temps a refredar-se. Concretament, aquesta zona d'estudi es situa a la Conca del Vallès (NE Península Ibèrica), on algunes localitats com La Garriga i Caldes de Montbui, tenen surgències d'aigua termal (60ºC i 70ºC, respectivament). Concretament, la metodologia aplicada es basa en dues parts principals: l'exploració geofísica i la geològica. Els mètodes geofísics ens permeten conèixer les propietats físiques del subsol arribant a grans profunditats sense haver de fer perforacions. Si les característiques físiques del terreny presenten un contrast suficient, poden permetre, per exemple, distingir entre tipus de roques, zones fracturades, o si hi ha circulació d'algun fluid. Tot i així, els resultats geofísics s'han de complementar amb altres estudis geocientífics per una correcta interpretació dels resultats. En aquest cas, aquesta tesis inclou una caracterització de la geologia, la fracturació i la hidrologia de la zona. La integració final de totes les dades ha permès entendre l'origen i el funcionament d'aquest sistema, resultat del qual es presenta en forma d'un model 3D conceptual, geològic i de temperatures. Aquesta metodologia innovadora, que integra diferents tècniques geocientífiques a escala diferent, ha combinat tècniques tradicionals amb eines digitals noves, facilitant la caracterització d'un sistema geotèrmic controlat per estructures geològiques. Per tant, s’estableix com una opció metòdica a seguir per a la caracterització de sistemes d’origen similar

    Audio-Magnetotelluric Modeling of Cimandiri Fault Zone at Cibeber, Cianjur

    Full text link
    DOI: 10.17014/ijog.4.1.39-47The characteristic of Cimandiri Fault Zone has not been completely defined despite plenty of studies had already been accomplished. Therefore, an audio-magnetotelluric modeling was carried out. An audiomagnetotelluric survey was conducted at two parallel lines (N166oE) that intersected Cimandiri Fault Zone in Cibeber area, Cianjur. The distance between those two lines was 4.5 km and each line consisted of twenty-one stations with the distance between stations was 500 m. From the acquired forty-two apparent resistivity curves, inversion was executed to obtain two models. The models indicate layers with resistivity value of &gt; 1000 ohm.m at about 500 m depth at both lines, which are associated to the basement layer. Columns of low resistivity zones in about the middle of each model represent fault zones as the weak zones of the area, and both models displayed them slightly dip southward as thrust faults.</p

    Magnetotelluric study of the Mérida Andes and surrounding basins, Venezuela

    Get PDF
    The Caribbean and South American tectonic plates bound the north-eastwards expulsion of the North Andean Block in western Venezuela. This complicated geodynamic setting resulted in the formation of major strike-slip fault systems and sizeable mountain chains. The 100 km wide Mérida Andes extend from the Colombian/Venezuelan border to the Coastal Cordillera. To the north and south, the Mérida Andes are bound by hydrocarbon-rich sedimentary basins. Knowledge of lithospheric structures, related to the formation of the Mérida Andes, is limited though, due to a lack of deep geophysical data. This thesis presents the results of the first broadband magnetotelluric profile crossing the Mérida Andes and the Maracaibo and Barinas-Apure foreland basins spanning a distance of 240 km. The MT dataset consists of 72 stations installed during March and April 2015 with a minimum recording period of 3 days per station. Geoelectrical strike and dimensionality analyses are consistent with one- or two- dimensional subsurface structures for the sedimentary basins yet also indicate a strong three- dimensional setting for the Mérida Andes. Even more significantly, these analyses showed the presence of off-profile features that influenced the data considerably, particularly at long periods. Therefore, a combination of 2D and 3D modelling was necessary for analysing the geoelectrical structures associated with this dataset. Off-profile structures can significantly affect the outcome of a 2D inversion. Thus, the systematic examination of the influence of 3D structures on 2D inversions was necessary to support the obtained result. Synthetic data sets derived from 3D modelling allowed identification and quantification of spurious off-profile features as well as smoothing artefacts due to limited areal station coverage of data collected along a profile. In general, structures in the 2D inversion are affected by the projection and rotation of the data resulting in sub-horizontal anomalies to reproduce the oblique extent of the fault systems and sedimentary basins. Moreover, a profile distributed dataset can limit the lateral resolution of a 3D inversion considerably. Hence, the effect of data distribution on a 3D inversion was carefully studied to determine the areas of the models that can be confidently explained by the data. To this end, several synthetic datasets were derived from 3D models with varying levels of complexity. The analysis of the synthetic datasets allows determination of the lateral resolution of the 3D models and identification of spurious shallow and deep features considered artefacts related to off-profile features. Furthermore, the inversion of synthetic models provided support to the geological interpretation of the recovered anomalies for the 2D and 3D modelling. The 2D and 3D inversion models were similar above the sedimentary basins and showed marked differences above the Mérida Andes, due to the 3D nature of this section. The inversion models show electrically conductive basins with depths of 2 to 5 km for the Barinas-Apure and 2 to 9 km for the Maracaibo basins. Many resistive bodies within the Maracaibo basin could be related to active deformation causing juxtaposition of older geological formations and younger basin sediments. A conductive zone under the Maracaibo Basin correlates spatially with the location of a Bouguer anomaly low and seem to describe the SE tilt of the Maracaibo Triangular Block under the Mérida Andes. This conductive zone is limited towards the mountain by the north-western thrust system, whose fault plane may function as a detachment surface reaching depth larger than 30 km in the 3D inversion models. The most prominent fault systems of the area, the Boconó and Valera Faults, cross-cut the Mérida Andes in NE-SW direction along its strike with a length 400 km and N-S direction at its centre with a length 60 km, respectively. Both faults are associated with sub-vertical zones of high electrical conductivity and sensitivity tests suggest that the Valera fault reach depths of up to 12 km. The Boconó fault can be considered a crustal structure with a depth up to 35 km. The observed anomalies seem to show a deep connection of the fault planes, possibly related to the formation of the fault systems in a transpressive regime. Conductive anomalies to the south of the Boconó Fault seem to represent a considerable back thrust structure well constrained between 3 and 10 km depth. The high conductivity of these structures is possibly related to weathering water from the surface and the accumulation of clay minerals in the fault gauges. However, fluids related to the flat and shallow subduction of the Caribbean Plate in north-western Venezuela could better explain the low resistivity of the deep structures (> 15 km). A sizeable conductor at 50 km depth, which appears consistently in the 2D sections, could be identified as an inversion artefact caused by a conductor east of the profile. The 3D inversion places this structure 10 km to the east at 15 km deep. This model also shows depth connection (12 km depth) of the anomalies related to the Valera and Boconó faults with the off-profile conductor. The observed anomalies in the 2D and 3D inversion related to these conductors were tested and reproduced employing synthetic datasets, leading to the speculation that the high conductivity associated with the off-profile conductor may be related to the detachment of the Trujillo Block. The models obtained confirm the shape and distribution of the known geological structures related to the complicated geodynamic settings responsible for the formation of the Mérida Andes. These results partially support the "floating orogen hypothesis" developed to explain the geodynamic evolution of western Venezuela, and they highlight the relevance of the Trujillo Block in this process. However, they also show that features of known structures such as the Boconó fault system maximum depth, the back-thrusting in the Mérida Andes, and the relevance of the escape of the Trujillo Block in the tectonic processes need to be adjusted to the current knowledge.Die Karibische und Südamerikanische tektonischen Platten begrenzten die nordöstliche Abschiebung des Nord-Anden-Blocks im Westen Venezuelas. Diese komplizierte geodynamische Umgebung führte zur Bildung großer Blattverschiebungen-Verwerfungssysteme und beträchtlicher Gebirgsketten. Die 100 km breiten Mérida-Andes erstrecken sich von der Grenze zwischen Kolumbien und Venezuela bis zum Coastal Cordillera. Im Norden und Süden sind die Mérida-Anden von kohlenwasserstoffreichen Sedimentbecken umgeben. Das Wissen über lithosphärische Strukturen im Zusammenhang mit der Bildung der Mérida-Anden ist jedoch aufgrund des Mangels an tiefen geophysikalischen Daten begrenzt. Diese Arbeit präsentiert die Ergebnisse des ersten breitbandigen magnetotellurischen Profils, das die Mérida-Anden und die Vorlandbecken Maracaibo und Barinas-Apure über eine Entfernung von 240 km quert. Der MT-Datensatz besteht aus 72 Stationen, die im März und April 2015 mit einer Mindestaufzeichnungsdauer von 3 Tagen pro Station installiert wurden. Geoelektrische Streich- und Dimensionalitätsanalysen stimmen mit ein- oder zweidimensionalen Untergrundstrukturen für die Sedimentbecken überein, weisen jedoch auch auf eine starke dreidimensionale Strukturen in der Umgebung der Mérida-Andes hin.. Noch wichtiger ist, dass diese Analysen das Vorhandensein von Merkmalen außerhalb des Profils zeigten, die die Daten insbesondere für lange Perioden erheblich beeinflussen. Daher war eine Kombination aus 2D- und 3D-Modellierung erforderlich, um Störungssysteme und Sedimentbecken quer zum Profil zu reproduzieren. Off-Profile-Strukturen können das Ergebnis einer 2D-Inversion erheblich beeinflussen. Daher war die systematische Untersuchung des Einflusses von 3D-Strukturen auf 2D-Inversionen erforderlich, um das erhaltene Ergebnis zu verifizieren. Synthetische Datensätze, die aus der 3D-Modellierung abgeleitet wurden, ermöglichten die Identifizierung und Quantifizierung von störenden Strukturen außerhalb des Profils sowie die Glättung von Artefakten aufgrund der begrenzten Stationsüberdeckung der entlang eines Profils gesammelten Daten. Im Allgemeinen werden Strukturen in der 2D-Inversion durch die Projektion und Rotation der Daten beeinflusst, was zu flach stehenden Anomalien führt, um die schräge Ausdehnung der Verwerfungssysteme und Sedimentbecken zu reproduzieren. Darüber hinaus kann ein Datensatz entlang eines Profils die laterale Auflösung einer 3D-Inversion erheblich einschränken. Daher wurde die Auswirkung der Datenverteilung auf eine 3D-Inversion sorgfältig untersucht, um die Bereiche der Modelle zu bestimmen, die durch die Daten sicher erklärt werden können. Zu diesem Zweck wurden mehrere synthetische Datensätze aus 3D-Modellen mit unterschiedlicher Komplexität abgeleitet. Die Analyse der synthetischen Datensätze ermöglicht die Bestimmung der lateralen Auflösung der 3D-Modelle und die Identifizierung von störenden oberflächennahen und tiefen Merkmalen, die als Artefakte im Zusammenhang mit Strukturen außerhalb des Profils betrachtet werden. Darüber hinaus unterstützte die Inversion synthetischer Modelle die geologische Interpretation der reproduzierten Anomalien für die 2D- und 3D-Modellierung. Die 2D- und 3D-Inversionsmodelle stimmen über den Sedimentbecken überein. Aufgrund der 3D Strukturen über den MA ergaben sich jedoch deutliche unterschiede. Die Inversionsmodelle zeigen elektrisch leitende Becken mit Tiefen von 2 bis 5 km für das Barinas-Apure und 2 bis 9 km für das Maracaibo-Becken. Viele Gebiete höheren Widerstands im Maracaibo-Becken könnten mit einer aktiven Deformation zusammenhängen, die ein Nebeneinander älterer geologischer Formationen und jüngerer Beckensedimente verursacht. Eine besserleitende Zone unter dem Maracaibo-Becken korreliert räumlich mit der Lage einer Bouguer-Anomalie und scheint die SE-Neigung des Maracaibo-Dreiecksblocks unter den Mérida-Anden zu markieren. Diese leitende Zone ist in Richtung des Gebirges durch das nordwestliche Schubsystem begrenzt, dessen Störungsebene als Ablösefläche fungieren kann, die in den 3D-Inversionsmodellen eine Tiefe von mehr als 30 km erreicht. Die bekanntesten Störungssysteme des Gebiets, die Verwerfungen Boconó und Valera, kreuzen die Mérida-Anden in Nordost-Südwest-Richtung entlang ihres Streichens mit einer Länge von 400 km und die N-S-Richtung in ihrer Mitte mit einer Länge von 60 km. Beide Störungen sind durch steil stehende Zonen hoher elektrischer Leitfähigkeit verbunden. Sensitivitätsstudien legen nahe, dass die Valera-Störung Tiefen von bis zu 12 km erreicht. Die Boconó-Verwerfung kann als Krustenstruktur mit einer Tiefe von bis zu 35 km angesehen werden. Die beobachteten Anomalien scheinen eine tiefe Verbindung der Verwerfungsebenen zu zeigen, möglicherweise im Zusammenhang mit der Bildung der Verwerfungssysteme in einem transpressiven Regime. Leitfähige Anomalien südlich der Boconó-Verwerfung scheinen eine beträchtliche Rückschubstruktur darzustellen, die zwischen 3 und 10 km Tiefe gut lokalisiert ist. Die hohe Leitfähigkeit dieser Strukturen hängt möglicherweise mitWasser aus Verwitterungsprozessen nahe der Erdoberfläche und der Ansammlung von Tonmineralien in den Störungszonen zusammen. Alte Fluide im Zusammenhang mit flach stehenden und oberflächenahen Subduktion der Karibikplatte im Nordwesten Venezuelas könnten jedoch den geringen spezifischen Widerstand der tiefen Strukturen (> 15 km) besser erklären. Ein beträchtlicher Leiter in einer Tiefe von 50 km, der in den 2D-Schnitten konsistent erscheint, konnte als Inversionsartefakt identifiziert werden, der durch einen Leiter östlich des Profils verursacht wird. Durch die 3D-Inversion wird diese Struktur 10 km östlich in 15 km Tiefe platziert. Dieses Modell zeigt auch die Tiefenverbindung (12 km Tiefe) der Anomalien im Zusammenhang mit den Störungen von Valera und Boconó mit dem Leiter außerhalb des Profils. Die beobachteten Anomalien in der 2D- und 3D-Inversion in Bezug auf diese Leiter wurden unter Verwendung synthetischer Datensätze getestet und reproduziert. Daher kann man annehmen das die mit dem Leiter abseits des Profils verbundene Leitfähigkeit mit der Ablösung des Trujilo Blocks zusammenhängt. Die erhaltenen Modelle bestätigen die Form und Verteilung der bekannten geologischen Strukturen im Zusammenhang mit dem komplizierten geodynamischen Millieu, welches für die Bildung der Mérida-Andes verantwortlich ist. Diese Ergebnisse stützen teilweise die "schwimmende Orogenhypothese", die entwickelt wurde, um die geodynamische Entwicklung West-Venezuelas zu erklären, und sie unterstreichen die Relevanz des Trujillo-Blocks in diesem Prozess. Sie zeigen jedoch auch, dass Merkmale bekannter Strukturen wie die maximale Tiefe des Boconó-Verwerfungssystems, das Zurückschieben in den Mérida-Anden und die Relevanz des Entweichens des Trujillo-Blocks in den tektonischen Prozessen an den aktuellen Kenntnisstand angepasst werden müssen
    corecore