6,153 research outputs found

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Collaborative immersive authoring tool for real-time creation of multisensory VR experiences

    Get PDF
    With the appearance of innovative virtual reality (VR) technologies, the need to create immersive content arose. Although there are already some non-immersive solutions to address immersive audio-visual content, there are no solutions that allow the creation of immersive multisensory content. This work proposes a novel architecture for a collaborative immersive tool that allows the creation of multisensory VR experiences in real-time, thus promoting the expeditious development, adoption, and use of immersive systems and enabling the building of custom-solutions that can be used in an intuitive manner to support organizations’ business initiatives. To validate the presented proposal, two approaches for the authoring tools (Desktop interface and Immersive interface) were subjected to a set of tests and evaluations consisting of a usability study that demonstrated not only the participants’ acceptance of the authoring tool but also the importance of using immersive interfaces for the creation of such VR experiences.info:eu-repo/semantics/publishedVersio

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    Reflections on the use of Project Wonderland as a mixed-reality environment for teaching and learning

    Get PDF
    This paper reflects on the lessons learnt from MiRTLE?a collaborative research project to create a ?mixed reality teaching and learning environment? that enables teachers and students participating in real-time mixed and online classes to interact with avatar representations of each other. The key hypothesis of the project is that avatar representations of teachers and students can help create a sense of shared presence, engendering a greater sense of community and improving student engagement in online lessons. This paper explores the technology that underpins such environments by presenting work on the use of a massively multi-user game server, based on Sun?s Project Darkstar and Project Wonderland tools, to create a shared teaching environment, illustrating the process by describing the creation of a virtual classroom. It is planned that the MiRTLE platform will be used in several trial applications ? which are described in the paper. These example applications are then used to explore some of the research issues arising from the use of virtual environments within an education environment. The research discussion initially focuses on the plans to assess this within the MiRTLE project. This includes some of the issues of designing virtual environments for teaching and learning, and how supporting pedagogical and social theories can inform this process

    Accessibility in 360Âș video players

    Get PDF
    Accessibility is a key requirement for any multimedia tool and application. With the current trend towards immersive experiences, such as Virtual Reality (VR) and 360o video, it becomes key that these environments are adapted to be fully accessible. However, until recently the focus has been mostly on adapting the existing techniques to fit immersive displays, rather than considering new approaches for accessibility designed specifically for these increasingly relevant media experiences. This paper surveys a wide range of 360o video players and examines the features they include for dealing with accessibility, such as Subtitles, Audio Description, Sign Language, User Interfaces and other interaction features, like voice control and support for multi-screen scenarios. These features have been chosen based on guidelines from standardization contributions, like in the World Wide Web Consortium (W3C) and the International Communication Union (ITU), and from research contributions for making 360Âș video consumption experiences accessible. The in-depth analysis has been part of a research effort towards the development of a fully inclusive and accessible 360Âș video player. The paper concludes by discussing how the newly developed player has gone above and beyond the existing solutions and guidelines, by providing accessibility features that meet the expectations for a widely used immersive medium, like 360Âș video

    Measuring the Affordances of Studying in a Virtual World

    Get PDF
    There has been much interest at the University of Hertfordshire in the teaching and learning in virtual worlds such as Second Life. The School of Computer Science has established a virtual campus within this system where a broad range of learning and teaching activities take place. These include presenting textual, audio and video learning and teaching materials, delivering virtual lectures, providing simulations and group working areas. Recently there has been a great deal of controversy over such initiatives, for example at my own university lecturers are divided as to the efficacy of such an approach. Some see the initiative as an interesting addition to the range of teaching and learning strategies available, likely to motivate learners. Others see it as a trivial attempt to jump on the latest band wagon, with little pedagogical benefit or justification. My own past research in this area, over several years has related to an estimation of the cognitive load imposed by desktop virtual environments and how this affected learning. Several important variables have been identified in several years of research and their effects measured. In the study presented here, a group of 80 final year computer science students used the Second Life virtual environment in order to support their practical project work. Groups of four learners used the university virtual campus especially modified for this purpose to hold meetings and to manage their software development projects. This study reports on how the group areas were established and used by the learners, the types of activities that took place and the effectiveness of the approach in this context. Quantitative and qualitative research was undertaken and it was found that there were benefits to be had by the use of such virtual environments. Recommendations are made as to the affordances of the Second Life virtual environment for teaching and learning in this context and also discussed are the potential problems inherent in this initiative related to individual differences and the cognitive burden imposed on learners.Peer reviewe

    Virtual Helicopter Landing Platform (V-HELP)

    Get PDF
    The research project focused on how virtual reality (VR) could create a non-immersive environment and improve in increasing safety awareness at offshore platform. The main problem is the typical training talk usually use video and audio presentation which cannot provide the walkthrough movement. The aim of this project is to develop and design Virtual Helicopter Landing Platform (V-HELP) application which allows users to explore the virtual platform environment. The objectives of this project are to design and develop helicopter landing platform; to visualize movement and facilitate understanding in VR; and at the same time identify components and characteristics of the virtual environment for adequate realism. In completion the project, the framework used is based on part of the waterfall "modeling theory. The phases involved in the framework used for project development is the analysis phase, design and development phase, integration and testing phase and lastly evaluation phase. Developments tools have been used in the project are 3D Maya 5..0.1 and Macromedia Flash MX software. As a result from the evaluation conducted, shows that most of the evaluators are satisfied with the project. They think that the realism of the prototype can be improved in virtual environment through enhancement on chosen the suitable textures materials and enable user control during walkthrough. As a conclusion, the research project show that Virtual Environment are very useful and more effective for the offshore safety training compared to the conventional method
    • 

    corecore