7,546 research outputs found

    Bundling Equilibrium in Combinatorial auctions

    Full text link
    This paper analyzes individually-rational ex post equilibrium in the VC (Vickrey-Clarke) combinatorial auctions. If Σ\Sigma is a family of bundles of goods, the organizer may restrict the participants by requiring them to submit their bids only for bundles in Σ\Sigma. The Σ\Sigma-VC combinatorial auctions (multi-good auctions) obtained in this way are known to be individually-rational truth-telling mechanisms. In contrast, this paper deals with non-restricted VC auctions, in which the buyers restrict themselves to bids on bundles in Σ\Sigma, because it is rational for them to do so. That is, it may be that when the buyers report their valuation of the bundles in Σ\Sigma, they are in an equilibrium. We fully characterize those Σ\Sigma that induce individually rational equilibrium in every VC auction, and we refer to the associated equilibrium as a bundling equilibrium. The number of bundles in Σ\Sigma represents the communication complexity of the equilibrium. A special case of bundling equilibrium is partition-based equilibrium, in which Σ\Sigma is a field, that is, it is generated by a partition. We analyze the tradeoff between communication complexity and economic efficiency of bundling equilibrium, focusing in particular on partition-based equilibrium

    Negotiating Socially Optimal Allocations of Resources

    Full text link
    A multiagent system may be thought of as an artificial society of autonomous software agents and we can apply concepts borrowed from welfare economics and social choice theory to assess the social welfare of such an agent society. In this paper, we study an abstract negotiation framework where agents can agree on multilateral deals to exchange bundles of indivisible resources. We then analyse how these deals affect social welfare for different instances of the basic framework and different interpretations of the concept of social welfare itself. In particular, we show how certain classes of deals are both sufficient and necessary to guarantee that a socially optimal allocation of resources will be reached eventually

    Budget Constrained Auctions with Heterogeneous Items

    Full text link
    In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles. We believe this approach will be useful in other Bayesian mechanism design contexts.Comment: Final version accepted to STOC '10. Incorporates significant reviewer comment

    Constant-Competitive Prior-Free Auction with Ordered Bidders

    Full text link
    A central problem in Microeconomics is to design auctions with good revenue properties. In this setting, the bidders' valuations for the items are private knowledge, but they are drawn from publicly known prior distributions. The goal is to find a truthful auction (no bidder can gain in utility by misreporting her valuation) that maximizes the expected revenue. Naturally, the optimal-auction is sensitive to the prior distributions. An intriguing question is to design a truthful auction that is oblivious to these priors, and yet manages to get a constant factor of the optimal revenue. Such auctions are called prior-free. Goldberg et al. presented a constant-approximate prior-free auction when there are identical copies of an item available in unlimited supply, bidders are unit-demand, and their valuations are drawn from i.i.d. distributions. The recent work of Leonardi et al. [STOC 2012] generalized this problem to non i.i.d. bidders, assuming that the auctioneer knows the ordering of their reserve prices. Leonardi et al. proposed a prior-free auction that achieves a O(logn)O(\log^* n) approximation. We improve upon this result, by giving the first prior-free auction with constant approximation guarantee.Comment: The same result has been obtained independently by E. Koutsoupias, S. Leonardi and T. Roughgarde

    Speculation in Standard Auctions with Resale

    Get PDF
    In standard auctions with symmetric, independent private value bidders resale creates a role for a speculator—a bidder who is commonly known to have no use value for the good on sale. For second-price and English auctions the efficient value-bidding equilibrium coexists with a continuum of inefficient equilibria in which the speculator wins the auction and makes positive profits. First-price and Dutch auctions have an essentially unique equilibrium, and whether or not the speculator wins the auction and distorts the final allocation depends on the number of bidders, the value distribution, and the discount factor. Speculators do not make profits in first-price or Dutch auctions
    corecore