580 research outputs found

    Auction-based Bandwidth Allocation Mechanisms for Wireless Future Internet

    Get PDF
    An important aspect of the Future Internet is the efficient utilization of (wireless) network resources. In order for the - demanding in terms of QoS - Future Internet services to be provided, the current trend is evolving towards an "integrated" wireless network access model that enables users to enjoy mobility, seamless access and high quality of service in an all-IP network on an "Anytime, Anywhere" basis. The term "integrated" is used to denote that the Future Internet wireless "last mile" is expected to comprise multiple heterogeneous geographically coexisting wireless networks, each having different capacity and coverage radius. The efficient management of the wireless access network resources is crucial due to their scarcity that renders wireless access a potential bottleneck for the provision of high quality services. In this paper we propose an auction mechanism for allocating the bandwidth of such a network so that efficiency is attained, i.e. social welfare is maximized. In particular, we propose an incentive-compatible, efficient auction-based mechanism of low computational complexity. We define a repeated game to address user utilities and incentives issues. Subsequently, we extend this mechanism so that it can also accommodate multicast sessions. We also analyze the computational complexity and message overhead of the proposed mechanism. We then show how user bids can be replaced from weights generated by the network and transform the auction to a cooperative mechanism capable of prioritizing certain classes of services and emulating DiffServ and time-of-day pricing schemes. The theoretical analysis is complemented by simulations that assess the proposed mechanisms properties and performance. We finally provide some concluding remarks and directions for future research

    Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation

    Full text link
    In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, KK users and NFN_F independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov Decision Problem (MDP) where the control actions are functions of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation Q-factor by the sum of the per-user subband allocation Q-factor and derive a distributive online stochastic learning algorithm to estimate the per-user Q-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online learning converges almost surely (with probability 1). For illustration, we apply the proposed distributive stochastic learning framework to an application example with exponential packet size distribution. We show that the delay-optimal power control has the {\em multi-level water-filling} structure where the CSI determines the instantaneous power allocation and the QSI determines the water-level. The proposed algorithm has linear signaling overhead and computational complexity O(KN)\mathcal O(KN), which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin

    The Case for Liberal Spectrum Licenses: A Technical and Economic Perspective

    Get PDF
    The traditional system of radio spectrum allocation has inefficiently restricted wireless services. Alternatively, liberal licenses ceding de facto spectrum ownership rights yield incentives for operators to maximize airwave value. These authorizations have been widely used for mobile services in the U.S. and internationally, leading to the development of highly productive services and waves of innovation in technology, applications and business models. Serious challenges to the efficacy of such a spectrum regime have arisen, however. Seeing the widespread adoption of such devices as cordless phones and wi-fi radios using bands set aside for unlicensed use, some scholars and policy makers posit that spectrum sharing technologies have become cheap and easy to deploy, mitigating airwave scarcity and, therefore, the utility of exclusive rights. This paper evaluates such claims technically and economically. We demonstrate that spectrum scarcity is alive and well. Costly conflicts over airwave use not only continue, but have intensified with scientific advances that dramatically improve the functionality of wireless devices and so increase demand for spectrum access. Exclusive ownership rights help direct spectrum inputs to where they deliver the highest social gains, making exclusive property rules relatively more socially valuable. Liberal licenses efficiently accommodate rival business models (including those commonly associated with unlicensed spectrum allocations) while mitigating the constraints levied on spectrum use by regulators imposing restrictions in traditional licenses or via use rules and technology standards in unlicensed spectrum allocations.

    Optimal 4G OFDMA Dynamic Subcarrier and Power Auction-based Allocation towards H.264 Scalable Video Transmission

    Get PDF
    In this paper, authors presented a price maximization scheme for optimal orthogonal frequency division for multiple access (OFDMA) subcarrier allocation for wireless video unicast/multicast scenarios. They formulate a pricing based video utility function for H.264 based wireless scalable video streaming, thereby achieving a trade-off between price and QoS fairness. These parametric models for scalable video rate and quality characterization arederived from the standard JSVM reference codec for the SVC extension of the H.264/AVC, and hence are directly applicable in practical wireless scenarios. With the aid of these models, they proposed auction based framework for revenue maximization of the transmitted video streams in the unicast and multicast 4G scenario. A closedform expression is derived for the optimal scalable video quantization step-size subject to the constraints of theunicast/multicast users in 4G wireless systems. This yields the optimal OFDMA subcarrier allocation for multi-userscalable video multiplexing. The proposed scheme is cognizant of the user modulation and code rate, and is henceamenable to adaptive modulation and coding (AMC) feature of 4G wireless networks. Further, they also consider aframework for optimal power allocation based on a novel revenue maximization scheme in OFDMA based wireless broadband 4G systems employing auction bidding models. This is formulated as a constrained convex optimization problem towards sum video utility maximization. We observe that as the demand for a video stream increases inbroadcast/multicast scenarios, higher power is allocated to the corresponding video stream leading to a gain in the overall revenue/utility. We simulate a standard WiMAX based 4G video transmission scenario to validate the performance of the proposed optimal 4G scalable video resource allocation schemes. Simulations illustrate that the proposed optimal band width and power allocation schemes result in a significant performance improvement over the suboptimal equal resource allocation schemes for scalable video transmission.Defence Science Journal, 2013, 63(1), pp.15-24, DOI:http://dx.doi.org/10.14429/dsj.63.375

    Increasing Spectrum for Broadband: What Are The Options?

    Get PDF
    The growth of wireless broadband is a bright spot in the U.S. economy, but a shortage of flexibly licensed spectrum rights could put a crimp on this expansion. Freeing up spectrum from other uses would allow greater expansion of wireless broadband and would bring substantial gains—likely in the hundreds of billions of dollars—for U.S. consumers, businesses, and the federal treasury. ... U.S. experience suggests that it takes at least six years, and possibly over a decade, to complete any large-scale reallocation of spectrum. Thus, for policymakers, the ?projected? need is actually here today. This paper makes three proposals to increase spectrum available for wireless broadband under a flexibly licensed, market-based regime.

    Spectrum Allocation, Spectrum Commons and Public Goods: the Role of the Market

    Get PDF
    The reallocation of radio spectrum to valuable new and emerging technologies and services is essential to achieving the next wave of productivity and consumer benefits driven by ICT. Currently spectrum is not allocated to the most valuable uses, particularly the large amount of spectrum held for government use, and command and control management cannot respond fully or quickly in reallocating spectrum. To achieve a more economically efficient allocation and the greatest overall benefit market mechanisms including trading and spectrum pricing must be introduced. Complementary reforms in areas other than spectrum management will be required, and the appropriate boundary between market and non-market allocation mechanisms need to be established. Setting clear principles regarding the market/non-market boundary will help in resisting the inevitable rent seeking by incumbents and potential entrants during the transition to market mechanisms. Countries that do not face up to these challenges and move quickly will see their citizens disadvantaged as spectrum becomes a key economic resource.spectrum policy, auctions, trading, spectrum pricing, digital switchover, real options, public sector use, licence exempt use, infrastructure, Competition Policy

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Chinese Experience with Global G3 Standard-Setting

    Get PDF
    China’s growth strategy as set out in the 11th 5-year plan in 2005 called for upgrading of product quality, the development of an innovation society, and reduced reliance on foreign intellectual property with high license fees. Consistent with this policy, China has been involved in recent years with the development of a Chinese standard in third generation (3G) mobile phone technology, both in negotiating the standard and seeing it through to commercialization. This is the first case of a developing country both originating and successfully negotiating a telecommunications standard and this experience raises issues for China’s future development strategy based on product and process upgrading in manufacturing. We argue that while precedent setting from an international negotiating point of view, the experience has thus far is unproven commercially. But the lessons learned will benefit future related efforts in follow-on technologies if similar Chinese efforts are made.This paper documents Chinese standard-setting efforts from proposal submission to ITU to the current large-scale trial network deployment in China and overseas trial networks deployment. We discuss the underlying objectives for this initiative, evaluate its effectiveness, and assess its broader implications for Chinese development policy.
    • …
    corecore