2,705 research outputs found

    A Generative Model For Zero Shot Learning Using Conditional Variational Autoencoders

    Full text link
    Zero shot learning in Image Classification refers to the setting where images from some novel classes are absent in the training data but other information such as natural language descriptions or attribute vectors of the classes are available. This setting is important in the real world since one may not be able to obtain images of all the possible classes at training. While previous approaches have tried to model the relationship between the class attribute space and the image space via some kind of a transfer function in order to model the image space correspondingly to an unseen class, we take a different approach and try to generate the samples from the given attributes, using a conditional variational autoencoder, and use the generated samples for classification of the unseen classes. By extensive testing on four benchmark datasets, we show that our model outperforms the state of the art, particularly in the more realistic generalized setting, where the training classes can also appear at the test time along with the novel classes

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    Addressing Dataset Bias in Deep Neural Networks

    Get PDF
    Deep Learning has achieved tremendous success in recent years in several areas such as image classification, text translation, autonomous agents, to name a few. Deep Neural Networks are able to learn non-linear features in a data-driven fashion from complex, large scale datasets to solve tasks. However, some fundamental issues remain to be fixed: the kind of data that is provided to the neural network directly influences its capability to generalize. This is especially true when training and test data come from different distributions (the so called domain gap or domain shift problem): in this case, the neural network may learn a data representation that is representative for the training data but not for the test, thus performing poorly when deployed in actual scenarios. The domain gap problem is addressed by the so-called Domain Adaptation, for which a large literature was recently developed. In this thesis, we first present a novel method to perform Unsupervised Domain Adaptation. Starting from the typical scenario in which we dispose of labeled source distributions and an unlabeled target distribution, we pursue a pseudo-labeling approach to assign a label to the target data, and then, in an iterative way, we refine them using Generative Adversarial Networks. Subsequently, we faced the debiasing problem. Simply speaking, bias occurs when there are factors in the data which are spuriously correlated with the task label, e.g., the background, which might be a strong clue to guess what class is depicted in an image. When this happens, neural networks may erroneously learn such spurious correlations as predictive factors, and may therefore fail when deployed on different scenarios. Learning a debiased model can be done using supervision regarding the type of bias affecting the data, or can be done without any annotation about what are the spurious correlations. We tackled the problem of supervised debiasing -- where a ground truth annotation for the bias is given -- under the lens of information theory. We designed a neural network architecture that learns to solve the task while achieving at the same time, statistical independence of the data embedding with respect to the bias label. We finally addressed the unsupervised debiasing problem, in which there is no availability of bias annotation. we address this challenging problem by a two-stage approach: we first split coarsely the training dataset into two subsets, samples that exhibit spurious correlations and those that do not. Second, we learn a feature representation that can accommodate both subsets and an augmented version of them

    Improving Fairness of Graph Neural Networks: A Graph Counterfactual Perspective

    Full text link
    Graph neural networks have shown great ability in representation (GNNs) learning on graphs, facilitating various tasks. Despite their great performance in modeling graphs, recent works show that GNNs tend to inherit and amplify the bias from training data, causing concerns of the adoption of GNNs in high-stake scenarios. Hence, many efforts have been taken for fairness-aware GNNs. However, most existing fair GNNs learn fair node representations by adopting statistical fairness notions, which may fail to alleviate bias in the presence of statistical anomalies. Motivated by causal theory, there are several attempts utilizing graph counterfactual fairness to mitigate root causes of unfairness. However, these methods suffer from non-realistic counterfactuals obtained by perturbation or generation. In this paper, we take a causal view on fair graph learning problem. Guided by the casual analysis, we propose a novel framework CAF, which can select counterfactuals from training data to avoid non-realistic counterfactuals and adopt selected counterfactuals to learn fair node representations for node classification task. Extensive experiments on synthetic and real-world datasets show the effectiveness of CAF

    How Does the Low-Rank Matrix Decomposition Help Internal and External Learnings for Super-Resolution

    Full text link
    Wisely utilizing the internal and external learning methods is a new challenge in super-resolution problem. To address this issue, we analyze the attributes of two methodologies and find two observations of their recovered details: 1) they are complementary in both feature space and image plane, 2) they distribute sparsely in the spatial space. These inspire us to propose a low-rank solution which effectively integrates two learning methods and then achieves a superior result. To fit this solution, the internal learning method and the external learning method are tailored to produce multiple preliminary results. Our theoretical analysis and experiment prove that the proposed low-rank solution does not require massive inputs to guarantee the performance, and thereby simplifying the design of two learning methods for the solution. Intensive experiments show the proposed solution improves the single learning method in both qualitative and quantitative assessments. Surprisingly, it shows more superior capability on noisy images and outperforms state-of-the-art methods
    corecore