5,399 research outputs found

    Retrieve Anyone: A General-purpose Person Re-identification Task with Instructions

    Full text link
    Human intelligence can retrieve any person according to both visual and language descriptions. However, the current computer vision community studies specific person re-identification (ReID) tasks in different scenarios separately, which limits the applications in the real world. This paper strives to resolve this problem by proposing a new instruct-ReID task that requires the model to retrieve images according to the given image or language instructions.Our instruct-ReID is a more general ReID setting, where existing ReID tasks can be viewed as special cases by designing different instructions. We propose a large-scale OmniReID benchmark and an adaptive triplet loss as a baseline method to facilitate research in this new setting. Experimental results show that the baseline model trained on our OmniReID benchmark can improve +0.5%, +3.3% mAP on Market1501 and CUHK03 for traditional ReID, +2.1%, +0.2%, +15.3% mAP on PRCC, VC-Clothes, LTCC for clothes-changing ReID, +12.5% mAP on COCAS+ real2 for clothestemplate based clothes-changing ReID when using only RGB images, +25.5% mAP on COCAS+ real2 for our newly defined language-instructed ReID. The dataset, model, and code will be available at https://github.com/hwz-zju/Instruct-ReID

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    Towards Unified Text-based Person Retrieval: A Large-scale Multi-Attribute and Language Search Benchmark

    Full text link
    In this paper, we introduce a large Multi-Attribute and Language Search dataset for text-based person retrieval, called MALS, and explore the feasibility of performing pre-training on both attribute recognition and image-text matching tasks in one stone. In particular, MALS contains 1,510,330 image-text pairs, which is about 37.5 times larger than prevailing CUHK-PEDES, and all images are annotated with 27 attributes. Considering the privacy concerns and annotation costs, we leverage the off-the-shelf diffusion models to generate the dataset. To verify the feasibility of learning from the generated data, we develop a new joint Attribute Prompt Learning and Text Matching Learning (APTM) framework, considering the shared knowledge between attribute and text. As the name implies, APTM contains an attribute prompt learning stream and a text matching learning stream. (1) The attribute prompt learning leverages the attribute prompts for image-attribute alignment, which enhances the text matching learning. (2) The text matching learning facilitates the representation learning on fine-grained details, and in turn, boosts the attribute prompt learning. Extensive experiments validate the effectiveness of the pre-training on MALS, achieving state-of-the-art retrieval performance via APTM on three challenging real-world benchmarks. In particular, APTM achieves a consistent improvement of +6.96%, +7.68%, and +16.95% Recall@1 accuracy on CUHK-PEDES, ICFG-PEDES, and RSTPReid datasets by a clear margin, respectively

    Can adversarial networks hallucinate occluded people with a plausible aspect?

    Get PDF
    When you see a person in a crowd, occluded by other persons, you miss visual information that can be used to recognize, re-identify or simply classify him or her. You can imagine its appearance given your experience, nothing more. Similarly, AI solutions can try to hallucinate missing information with specific deep learning architectures, suitably trained with people with and without occlusions. The goal of this work is to generate a complete image of a person, given an occluded version in input, that should be a) without occlusion b) similar at pixel level to a completely visible people shape c) capable to conserve similar visual attributes (e.g. male/female) of the original one. For the purpose, we propose a new approach by integrating the state-of-the-art of neural network architectures, namely U-nets and GANs, as well as discriminative attribute classification nets, with an architecture specifically designed to de-occlude people shapes. The network is trained to optimize a Loss function which could take into account the aforementioned objectives. As well we propose two datasets for testing our solution: the first one, occluded RAP, created automatically by occluding real shapes of the RAP dataset created by Li et al. (2016) (which collects also attributes of the people aspect); the second is a large synthetic dataset, AiC, generated in computer graphics with data extracted from the GTA video game, that contains 3D data of occluded objects by construction. Results are impressive and outperform any other previous proposal. This result could be an initial step to many further researches to recognize people and their behavior in an open crowded world
    • …
    corecore