11,500 research outputs found

    Attentive History Selection for Conversational Question Answering

    Full text link
    Conversational question answering (ConvQA) is a simplified but concrete setting of conversational search. One of its major challenges is to leverage the conversation history to understand and answer the current question. In this work, we propose a novel solution for ConvQA that involves three aspects. First, we propose a positional history answer embedding method to encode conversation history with position information using BERT in a natural way. BERT is a powerful technique for text representation. Second, we design a history attention mechanism (HAM) to conduct a "soft selection" for conversation histories. This method attends to history turns with different weights based on how helpful they are on answering the current question. Third, in addition to handling conversation history, we take advantage of multi-task learning (MTL) to do answer prediction along with another essential conversation task (dialog act prediction) using a uniform model architecture. MTL is able to learn more expressive and generic representations to improve the performance of ConvQA. We demonstrate the effectiveness of our model with extensive experimental evaluations on QuAC, a large-scale ConvQA dataset. We show that position information plays an important role in conversation history modeling. We also visualize the history attention and provide new insights into conversation history understanding.Comment: Accepted to CIKM 201

    Open-Retrieval Conversational Question Answering

    Full text link
    Conversational search is one of the ultimate goals of information retrieval. Recent research approaches conversational search by simplified settings of response ranking and conversational question answering, where an answer is either selected from a given candidate set or extracted from a given passage. These simplifications neglect the fundamental role of retrieval in conversational search. To address this limitation, we introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers, as a further step towards building functional conversational search systems. We create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers. Our extensive experiments on OR-QuAC demonstrate that a learnable retriever is crucial for ORConvQA. We further show that our system can make a substantial improvement when we enable history modeling in all system components. Moreover, we show that the reranker component contributes to the model performance by providing a regularization effect. Finally, further in-depth analyses are performed to provide new insights into ORConvQA.Comment: Accepted to SIGIR'2

    Learning to Select the Relevant History Turns in Conversational Question Answering

    Full text link
    The increasing demand for the web-based digital assistants has given a rapid rise in the interest of the Information Retrieval (IR) community towards the field of conversational question answering (ConvQA). However, one of the critical aspects of ConvQA is the effective selection of conversational history turns to answer the question at hand. The dependency between relevant history selection and correct answer prediction is an intriguing but under-explored area. The selected relevant context can better guide the system so as to where exactly in the passage to look for an answer. Irrelevant context, on the other hand, brings noise to the system, thereby resulting in a decline in the model's performance. In this paper, we propose a framework, DHS-ConvQA (Dynamic History Selection in Conversational Question Answering), that first generates the context and question entities for all the history turns, which are then pruned on the basis of similarity they share in common with the question at hand. We also propose an attention-based mechanism to re-rank the pruned terms based on their calculated weights of how useful they are in answering the question. In the end, we further aid the model by highlighting the terms in the re-ranked conversational history using a binary classification task and keeping the useful terms (predicted as 1) and ignoring the irrelevant terms (predicted as 0). We demonstrate the efficacy of our proposed framework with extensive experimental results on CANARD and QuAC -- the two popularly utilized datasets in ConvQA. We demonstrate that selecting relevant turns works better than rewriting the original question. We also investigate how adding the irrelevant history turns negatively impacts the model's performance and discuss the research challenges that demand more attention from the IR community

    Query Resolution for Conversational Search with Limited Supervision

    Get PDF
    In this work we focus on multi-turn passage retrieval as a crucial component of conversational search. One of the key challenges in multi-turn passage retrieval comes from the fact that the current turn query is often underspecified due to zero anaphora, topic change, or topic return. Context from the conversational history can be used to arrive at a better expression of the current turn query, defined as the task of query resolution. In this paper, we model the query resolution task as a binary term classification problem: for each term appearing in the previous turns of the conversation decide whether to add it to the current turn query or not. We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers. We propose a distant supervision method to automatically generate training data by using query-passage relevance labels. Such labels are often readily available in a collection either as human annotations or inferred from user interactions. We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC. We incorporate QuReTeC in a multi-turn, multi-stage passage retrieval architecture and demonstrate its effectiveness on the TREC CAsT dataset.Comment: SIGIR 2020 full conference pape

    Conversational Machine Comprehension: a Literature Review

    Full text link
    Conversational Machine Comprehension (CMC), a research track in conversational AI, expects the machine to understand an open-domain natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering (QA), multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models such as BERT and the introduction of large-scale conversational datasets such as CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review attempts at providing a holistic overview of CMC with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. The review synthesizes a generic framework for CMC models while highlighting the differences in recent approaches and intends to serve as a compendium of CMC for future researchers.Comment: Accepted to COLING 202
    • …
    corecore