29 research outputs found

    Dependency Relationships-Enhanced Attentive Group Recommendation in HINs

    Full text link
    Recommending suitable items to a group of users, commonly referred to as the group recommendation task, is becoming increasingly urgent with the development of group activities. The challenges within the group recommendation task involve aggregating the individual preferences of group members as the group's preferences and facing serious sparsity problems due to the lack of user/group-item interactions. To solve these problems, we propose a novel approach called Dependency Relationships-Enhanced Attentive Group Recommendation (DREAGR) for the recommendation task of occasional groups. Specifically, we introduce the dependency relationship between items as side information to enhance the user/group-item interaction and alleviate the interaction sparsity problem. Then, we propose a Path-Aware Attention Embedding (PAAE) method to model users' preferences on different types of paths. Next, we design a gated fusion mechanism to fuse users' preferences into their comprehensive preferences. Finally, we develop an attention aggregator that aggregates users' preferences as the group's preferences for the group recommendation task. We conducted experiments on two datasets to demonstrate the superiority of DREAGR by comparing it with state-of-the-art group recommender models. The experimental results show that DREAGR outperforms other models, especially HR@N and NDCG@N (N=5, 10), where DREAGR has improved in the range of 3.64% to 7.01% and 2.57% to 3.39% on both datasets, respectively.Comment: 14 pages, 9 figures, This paper has been submitted to IEEE Transactions on Knowledge and Data Engineerin

    Multi-Granularity Attention Model for Group Recommendation

    Full text link
    Group recommendation provides personalized recommendations to a group of users based on their shared interests, preferences, and characteristics. Current studies have explored different methods for integrating individual preferences and making collective decisions that benefit the group as a whole. However, most of them heavily rely on users with rich behavior and ignore latent preferences of users with relatively sparse behavior, leading to insufficient learning of individual interests. To address this challenge, we present the Multi-Granularity Attention Model (MGAM), a novel approach that utilizes multiple levels of granularity (i.e., subsets, groups, and supersets) to uncover group members' latent preferences and mitigate recommendation noise. Specially, we propose a Subset Preference Extraction module that enhances the representation of users' latent subset-level preferences by incorporating their previous interactions with items and utilizing a hierarchical mechanism. Additionally, our method introduces a Group Preference Extraction module and a Superset Preference Extraction module, which explore users' latent preferences on two levels: the group-level, which maintains users' original preferences, and the superset-level, which includes group-group exterior information. By incorporating the subset-level embedding, group-level embedding, and superset-level embedding, our proposed method effectively reduces group recommendation noise across multiple granularities and comprehensively learns individual interests. Extensive offline and online experiments have demonstrated the superiority of our method in terms of performance

    Thinking inside The Box: Learning Hypercube Representations for Group Recommendation

    Full text link
    As a step beyond traditional personalized recommendation, group recommendation is the task of suggesting items that can satisfy a group of users. In group recommendation, the core is to design preference aggregation functions to obtain a quality summary of all group members' preferences. Such user and group preferences are commonly represented as points in the vector space (i.e., embeddings), where multiple user embeddings are compressed into one to facilitate ranking for group-item pairs. However, the resulted group representations, as points, lack adequate flexibility and capacity to account for the multi-faceted user preferences. Also, the point embedding-based preference aggregation is a less faithful reflection of a group's decision-making process, where all users have to agree on a certain value in each embedding dimension instead of a negotiable interval. In this paper, we propose a novel representation of groups via the notion of hypercubes, which are subspaces containing innumerable points in the vector space. Specifically, we design the hypercube recommender (CubeRec) to adaptively learn group hypercubes from user embeddings with minimal information loss during preference aggregation, and to leverage a revamped distance metric to measure the affinity between group hypercubes and item points. Moreover, to counteract the long-standing issue of data sparsity in group recommendation, we make full use of the geometric expressiveness of hypercubes and innovatively incorporate self-supervision by intersecting two groups. Experiments on four real-world datasets have validated the superiority of CubeRec over state-of-the-art baselines.Comment: To appear in SIGIR'2

    Attentive Aspect Modeling for Review-aware Recommendation

    Full text link
    In recent years, many studies extract aspects from user reviews and integrate them with ratings for improving the recommendation performance. The common aspects mentioned in a user's reviews and a product's reviews indicate indirect connections between the user and product. However, these aspect-based methods suffer from two problems. First, the common aspects are usually very sparse, which is caused by the sparsity of user-product interactions and the diversity of individual users' vocabularies. Second, a user's interests on aspects could be different with respect to different products, which are usually assumed to be static in existing methods. In this paper, we propose an Attentive Aspect-based Recommendation Model (AARM) to tackle these challenges. For the first problem, to enrich the aspect connections between user and product, besides common aspects, AARM also models the interactions between synonymous and similar aspects. For the second problem, a neural attention network which simultaneously considers user, product and aspect information is constructed to capture a user's attention towards aspects when examining different products. Extensive quantitative and qualitative experiments show that AARM can effectively alleviate the two aforementioned problems and significantly outperforms several state-of-the-art recommendation methods on top-N recommendation task.Comment: Camera-ready manuscript for TOI

    UNICON: A unified framework for behavior-based consumer segmentation in e-commerce

    Full text link
    Data-driven personalization is a key practice in fashion e-commerce, improving the way businesses serve their consumers needs with more relevant content. While hyper-personalization offers highly targeted experiences to each consumer, it requires a significant amount of private data to create an individualized journey. To alleviate this, group-based personalization provides a moderate level of personalization built on broader common preferences of a consumer segment, while still being able to personalize the results. We introduce UNICON, a unified deep learning consumer segmentation framework that leverages rich consumer behavior data to learn long-term latent representations and utilizes them to extract two pivotal types of segmentation catering various personalization use-cases: lookalike, expanding a predefined target seed segment with consumers of similar behavior, and data-driven, revealing non-obvious consumer segments with similar affinities. We demonstrate through extensive experimentation our framework effectiveness in fashion to identify lookalike Designer audience and data-driven style segments. Furthermore, we present experiments that showcase how segment information can be incorporated in a hybrid recommender system combining hyper and group-based personalization to exploit the advantages of both alternatives and provide improvements on consumer experience
    corecore