3 research outputs found

    Multi-task Pairwise Neural Ranking for Hashtag Segmentation

    Full text link
    Hashtags are often employed on social media and beyond to add metadata to a textual utterance with the goal of increasing discoverability, aiding search, or providing additional semantics. However, the semantic content of hashtags is not straightforward to infer as these represent ad-hoc conventions which frequently include multiple words joined together and can include abbreviations and unorthodox spellings. We build a dataset of 12,594 hashtags split into individual segments and propose a set of approaches for hashtag segmentation by framing it as a pairwise ranking problem between candidate segmentations. Our novel neural approaches demonstrate 24.6% error reduction in hashtag segmentation accuracy compared to the current state-of-the-art method. Finally, we demonstrate that a deeper understanding of hashtag semantics obtained through segmentation is useful for downstream applications such as sentiment analysis, for which we achieved a 2.6% increase in average recall on the SemEval 2017 sentiment analysis dataset.Comment: 12 pages, ACL 201

    Intention Detection Based on Siamese Neural Network With Triplet Loss

    Get PDF
    Understanding the user's intention is an essential task for the spoken language understanding (SLU) module in the dialogue system, which further illustrates vital information for managing and generating future action and response. In this paper, we propose a triplet training framework based on the multiclass classification approach to conduct the training for the intention detection task. Precisely, we utilize a Siamese neural network architecture with metric learning to construct a robust and discriminative utterance feature embedding model. We modified the RMCNN model and fine-tuned BERT model as Siamese encoders to train utterance triplets from different semantic aspects. The triplet loss can effectively distinguish the details of two input data by learning a mapping from sequence utterances to a compact Euclidean space. After generating the mapping, the intention detection task can be easily implemented using standard techniques with pre-trained embeddings as feature vectors. Besides, we use the fusion strategy to enhance utterance feature representation in the downstream of intention detection task. We conduct experiments on several benchmark datasets of intention detection task: Snips dataset, ATIS dataset, Facebook multilingual task-oriented datasets, Daily Dialogue dataset, and MRDA dataset. The results illustrate that the proposed method can effectively improve the recognition performance of these datasets and achieves new state-of-the-art results on single-turn task-oriented datasets (Snips dataset, Facebook dataset), and a multi-turn dataset (Daily Dialogue dataset)
    corecore