22 research outputs found

    Focal Inverse Distance Transform Maps for Crowd Localization and Counting in Dense Crowd

    Full text link
    In this paper, we propose a novel map for dense crowd localization and crowd counting. Most crowd counting methods utilize convolution neural networks (CNN) to regress a density map, achieving significant progress recently. However, these regression-based methods are often unable to provide a precise location for each person, attributed to two crucial reasons: 1) the density map consists of a series of blurry Gaussian blobs, 2) severe overlaps exist in the dense region of the density map. To tackle this issue, we propose a novel Focal Inverse Distance Transform (FIDT) map for crowd localization and counting. Compared with the density maps, the FIDT maps accurately describe the people's location, without overlap between nearby heads in dense regions. We simultaneously implement crowd localization and counting by regressing the FIDT map. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art localization-based methods in crowd localization tasks, achieving very competitive performance compared with the regression-based methods in counting tasks. In addition, the proposed method presents strong robustness for the negative samples and extremely dense scenes, which further verifies the effectiveness of the FIDT map. The code and models are available at https://github.com/dk-liang/FIDTM.Comment: The code and models are available at https://github.com/dk-liang/FIDT

    Fine-grained Domain Adaptive Crowd Counting via Point-derived Segmentation

    Full text link
    Due to domain shift, a large performance drop is usually observed when a trained crowd counting model is deployed in the wild. While existing domain-adaptive crowd counting methods achieve promising results, they typically regard each crowd image as a whole and reduce domain discrepancies in a holistic manner, thus limiting further improvement of domain adaptation performance. To this end, we propose to untangle \emph{domain-invariant} crowd and \emph{domain-specific} background from crowd images and design a fine-grained domain adaption method for crowd counting. Specifically, to disentangle crowd from background, we propose to learn crowd segmentation from point-level crowd counting annotations in a weakly-supervised manner. Based on the derived segmentation, we design a crowd-aware domain adaptation mechanism consisting of two crowd-aware adaptation modules, i.e., Crowd Region Transfer (CRT) and Crowd Density Alignment (CDA). The CRT module is designed to guide crowd features transfer across domains beyond background distractions. The CDA module dedicates to regularising target-domain crowd density generation by its own crowd density distribution. Our method outperforms previous approaches consistently in the widely-used adaptation scenarios.Comment: 10 pages, 5 figures, and 9 table
    corecore