23,378 research outputs found

    Joint RNN Model for Argument Component Boundary Detection

    Full text link
    Argument Component Boundary Detection (ACBD) is an important sub-task in argumentation mining; it aims at identifying the word sequences that constitute argument components, and is usually considered as the first sub-task in the argumentation mining pipeline. Existing ACBD methods heavily depend on task-specific knowledge, and require considerable human efforts on feature-engineering. To tackle these problems, in this work, we formulate ACBD as a sequence labeling problem and propose a variety of Recurrent Neural Network (RNN) based methods, which do not use domain specific or handcrafted features beyond the relative position of the sentence in the document. In particular, we propose a novel joint RNN model that can predict whether sentences are argumentative or not, and use the predicted results to more precisely detect the argument component boundaries. We evaluate our techniques on two corpora from two different genres; results suggest that our joint RNN model obtain the state-of-the-art performance on both datasets.Comment: 6 pages, 3 figures, submitted to IEEE SMC 201

    The Argument Reasoning Comprehension Task: Identification and Reconstruction of Implicit Warrants

    Full text link
    Reasoning is a crucial part of natural language argumentation. To comprehend an argument, one must analyze its warrant, which explains why its claim follows from its premises. As arguments are highly contextualized, warrants are usually presupposed and left implicit. Thus, the comprehension does not only require language understanding and logic skills, but also depends on common sense. In this paper we develop a methodology for reconstructing warrants systematically. We operationalize it in a scalable crowdsourcing process, resulting in a freely licensed dataset with warrants for 2k authentic arguments from news comments. On this basis, we present a new challenging task, the argument reasoning comprehension task. Given an argument with a claim and a premise, the goal is to choose the correct implicit warrant from two options. Both warrants are plausible and lexically close, but lead to contradicting claims. A solution to this task will define a substantial step towards automatic warrant reconstruction. However, experiments with several neural attention and language models reveal that current approaches do not suffice.Comment: Accepted as NAACL 2018 Long Paper; see details on the front pag

    What changed your mind : the roles of dynamic topics and discourse in argumentation process

    Get PDF
    In our world with full of uncertainty, debates and argumentation contribute to the progress of science and society. Despite of the in- creasing attention to characterize human arguments, most progress made so far focus on the debate outcome, largely ignoring the dynamic patterns in argumentation processes. This paper presents a study that automatically analyzes the key factors in argument persuasiveness, beyond simply predicting who will persuade whom. Specifically, we propose a novel neural model that is able to dynamically track the changes of latent topics and discourse in argumentative conversations, allowing the investigation of their roles in influencing the outcomes of persuasion. Extensive experiments have been conducted on argumentative conversations on both social media and supreme court. The results show that our model outperforms state-of-the-art models in identifying persuasive arguments via explicitly exploring dynamic factors of topic and discourse. We further analyze the effects of topics and discourse on persuasiveness, and find that they are both useful -- topics provide concrete evidence while superior discourse styles may bias participants, especially in social media arguments. In addition, we draw some findings from our empirical results, which will help people better engage in future persuasive conversations

    Summarizing Dialogic Arguments from Social Media

    Full text link
    Online argumentative dialog is a rich source of information on popular beliefs and opinions that could be useful to companies as well as governmental or public policy agencies. Compact, easy to read, summaries of these dialogues would thus be highly valuable. A priori, it is not even clear what form such a summary should take. Previous work on summarization has primarily focused on summarizing written texts, where the notion of an abstract of the text is well defined. We collect gold standard training data consisting of five human summaries for each of 161 dialogues on the topics of Gay Marriage, Gun Control and Abortion. We present several different computational models aimed at identifying segments of the dialogues whose content should be used for the summary, using linguistic features and Word2vec features with both SVMs and Bidirectional LSTMs. We show that we can identify the most important arguments by using the dialog context with a best F-measure of 0.74 for gun control, 0.71 for gay marriage, and 0.67 for abortion.Comment: Proceedings of the 21th Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2017

    Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!

    Full text link
    Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at \url{http://github.com/UKPLab/coling2018-xling_argument_mining}.Comment: Accepted at Coling 201
    corecore