100 research outputs found

    Matching sets of features for efficient retrieval and recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 145-153).In numerous domains it is useful to represent a single example by the collection of local features or parts that comprise it. In computer vision in particular, local image features are a powerful way to describe images of objects and scenes. Their stability under variable image conditions is critical for success in a wide range of recognition and retrieval applications. However, many conventional similarity measures and machine learning algorithms assume vector inputs. Comparing and learning from images represented by sets of local features is therefore challenging, since each set may vary in cardinality and its elements lack a meaningful ordering. In this thesis I present computationally efficient techniques to handle comparisons, learning, and indexing with examples represented by sets of features. The primary goal of this research is to design and demonstrate algorithms that can effectively accommodate this useful representation in a way that scales with both the representation size as well as the number of images available for indexing or learning. I introduce the pyramid match algorithm, which efficiently forms an implicit partial matching between two sets of feature vectors.(cont.) The matching has a linear time complexity, naturally forms a Mercer kernel, and is robust to clutter or outlier features, a critical advantage for handling images with variable backgrounds, occlusions, and viewpoint changes. I provide bounds on the expected error relative to the optimal partial matching. For very large databases, even extremely efficient pairwise comparisons may not offer adequately responsive query times. I show how to perform sub-linear time retrievals under the matching measure with randomized hashing techniques, even when input sets have varying numbers of features. My results are focused on several important vision tasks, including applications to content-based image retrieval, discriminative classification for object recognition, kernel regression, and unsupervised learning of categories. I show how the dramatic increase in performance enables accurate and flexible image comparisons to be made on large-scale data sets, and removes the need to artificially limit the number of local descriptions used per image when learning visual categories.by Kristen Lorraine Grauman.Ph.D

    Privacy preserving content analysis, indexing and retrieval for social search applications

    Get PDF
    [no abstract

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Creating and Recognizing 3D Objects

    Get PDF
    This thesis aims at investigating on 3D Computer Vision, a research topic which is gathering even increasing attention thanks to the more and more widespread availability of affordable 3D visual sensor, such as, in particular consumer grade RGB-D cameras. The contribution of this dissertation is twofold. First, the work addresses how to compactly represent the content of images acquired with RGB-D cameras. Second, the thesis focuses on 3D Reconstruction, key issue to efficiently populate the databases of 3D models deployed in object/category recognition scenarios. As 3D Registration plays a fundamental role in 3D Reconstruction, the former part of the thesis proposes a pipeline for coarse registration of point clouds that is entirely based on the computation of 3D Local Reference Frames (LRF). Unlike related work in literature, we also propose a comprehensive experimental evaluation based on diverse kinds of data (such as those acquired by laser scanners, RGB-D and stereo cameras) as well as on quantitative comparison with respect to three other methods. Driven by the ever-lower costs and growing distribution of 3D sensing devices, we expect broad-scale integration of depth sensing into mobile devices to be forthcoming. Accordingly, the thesis investigates on merging appearance and shape information for Mobile Visual Search and focuses on encoding RGB-D images in compact binary codes. An extensive experimental analysis on three state-of-the-art datasets, addressing both category and instance recognition scenarios, has led to the development of an RGB-D search engine architecture that can attain high recognition rates with peculiarly moderate bandwidth requirements. Our experiments also include a comparison with the CDVS (Compact Descriptors for Visual Search) pipeline, candidate to become part of the MPEG-7 standard
    • …
    corecore