90,285 research outputs found

    Experimental Study of Machine-Learning-Based Detection and Identification of Physical-Layer Attacks in Optical Networks

    Get PDF
    Optical networks are critical infrastructure supporting vital services and are vulnerable to different types of malicious attacks targeting service disruption at the optical layer. Due to the various attack techniques causing diverse physical- layer effects, as well as the limitations and sparse placement of optical performance monitoring devices, such attacks are difficult to detect, and their signatures are unknown. This paper presents a Machine Learning (ML) framework for detection and identification of physical-layer attacks, based on experimental attack traces from an operator field-deployed testbed with coherent receivers. We perform in-band and out-of-band jamming signal insertion attacks, as well as polarization modulation attacks, each with varying intensities. We then evaluate 8 different ML classifiers in terms of their accuracy, and scalability in processing experimental data. The optical parameters critical for accurate attack identification are identified and the generalization of the models is validated. Results indicate that Artificial Neural Networks (ANNs) achieve 99.9% accuracy in attack type and intensity classification, and are capable of processing 1 million samples in less than 10 seconds

    Root Cause Analysis for Autonomous Optical Network Security Management

    Get PDF
    The ongoing evolution of optical networks towards autonomous systems supporting high-performance services beyond 5G requires advanced functionalities for automated security management. To cope with evolving threat landscape, security diagnostic approaches should be able to detect and identify the nature not only of existing attack techniques, but also those hitherto unknown or insufficiently represented. Machine Learning (ML)-based algorithms perform well when identifying known attack types, but cannot guarantee precise identification of unknown attacks. This makes Root Cause Analysis (RCA) crucial for enabling timely attack response when human intervention is unavoidable. We address these challenges by establishing an ML-based framework for security assessment and analyzing RCA alternatives for physical-layer attacks. We first scrutinize different Network Management System (NMS) architectures and the corresponding security assessment capabilities. We then investigate the applicability of supervised and unsupervised learning (SL and UL) approaches for RCA and propose a novel UL-based RCA algorithm called Distance-Based Root Cause Analysis (DB-RCA). The framework’s applicability and performance for autonomous optical network security management is validated on an experimental physical-layer security dataset, assessing the benefits and drawbacks of the SL-and UL-based RCA. Besides confirming that SL-based approaches can provide precise RCA output for known attack types upon training, we show that the proposed UL-based RCA approach offers meaningful insight into the anomalies caused by novel attack types, thus supporting the human security officers in advancing the physical-layer security diagnostics

    FID: Function Modeling-based Data-Independent and Channel-Robust Physical-Layer Identification

    Full text link
    Trusted identification is critical to secure IoT devices. However, the limited memory and computation power of low-end IoT devices prevent the direct usage of conventional identification systems. RF fingerprinting is a promising technique to identify low-end IoT devices since it only requires the RF signals that most IoT devices can produce for communication. However, most existing RF fingerprinting systems are data-dependent and/or not robust to impacts from wireless channels. To address the above problems, we propose to exploit the mathematical expression of the physical-layer process, regarded as a function F(â‹…)\mathbf{\mathcal{F}(\cdot)}, for device identification. F(â‹…)\mathbf{\mathcal{F}(\cdot)} is not directly derivable, so we further propose a model to learn it and employ this function model as the device fingerprint in our system, namely F\mathcal{F}ID. Our proposed function model characterizes the unique physical-layer process of a device that is independent of the transmitted data, and hence, our system F\mathcal{F}ID is data-independent and thus resilient against signal replay attacks. Modeling and further separating channel effects from the function model makes F\mathcal{F}ID channel-robust. We evaluate F\mathcal{F}ID on thousands of random signal packets from 3333 different devices in different environments and scenarios, and the overall identification accuracy is over 99%99\%.Comment: Accepted to INFOCOM201

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure
    • …
    corecore