8 research outputs found

    Deep Serial Number: Computational Watermarking for DNN Intellectual Property Protection

    Full text link
    In this paper, we introduce DSN (Deep Serial Number), a new watermarking approach that can prevent the stolen model from being deployed by unauthorized parties. Recently, watermarking in DNNs has emerged as a new research direction for owners to claim ownership of DNN models. However, the verification schemes of existing watermarking approaches are vulnerable to various watermark attacks. Different from existing work that embeds identification information into DNNs, we explore a new DNN Intellectual Property Protection mechanism that can prevent adversaries from deploying the stolen deep neural networks. Motivated by the success of serial number in protecting conventional software IP, we introduce the first attempt to embed a serial number into DNNs. Specifically, the proposed DSN is implemented in the knowledge distillation framework, where a private teacher DNN is first trained, then its knowledge is distilled and transferred to a series of customized student DNNs. During the distillation process, each customer DNN is augmented with a unique serial number, i.e., an encrypted 0/1 bit trigger pattern. Customer DNN works properly only when a potential customer enters the valid serial number. The embedded serial number could be used as a strong watermark for ownership verification. Experiments on various applications indicate that DSN is effective in terms of preventing unauthorized application while not sacrificing the original DNN performance. The experimental analysis further shows that DSN is resistant to different categories of attacks

    Human-Readable Fingerprint for Large Language Models

    Full text link
    Protecting the copyright of large language models (LLMs) has become crucial due to their resource-intensive training and accompanying carefully designed licenses. However, identifying the original base model of an LLM is challenging due to potential parameter alterations. In this study, we introduce a human-readable fingerprint for LLMs that uniquely identifies the base model without exposing model parameters or interfering with training. We first observe that the vector direction of LLM parameters remains stable after the model has converged during pretraining, showing negligible perturbations through subsequent training steps, including continued pretraining, supervised fine-tuning (SFT), and RLHF, which makes it a sufficient condition to identify the base model. The necessity is validated by continuing to train an LLM with an extra term to drive away the model parameters' direction and the model becomes damaged. However, this direction is vulnerable to simple attacks like dimension permutation or matrix rotation, which significantly change it without affecting performance. To address this, leveraging the Transformer structure, we systematically analyze potential attacks and define three invariant terms that identify an LLM's base model. We make these invariant terms human-readable by mapping them to a Gaussian vector using a convolutional encoder and then converting it into a natural image with StyleGAN2. Our method generates a dog image as an identity fingerprint for an LLM, where the dog's appearance strongly indicates the LLM's base model. The fingerprint provides intuitive information for qualitative discrimination, while the invariant terms can be employed for quantitative and precise verification. Experimental results across various LLMs demonstrate the effectiveness of our method

    Data Protection in Big Data Analysis

    Get PDF
    "Big data" applications are collecting data from various aspects of our lives more and more every day. This fast transition has surpassed the development pace of data protection techniques and has resulted in innumerable data breaches and privacy violations. To prevent that, it is important to ensure the data is protected while at rest, in transit, in use, as well as during computation or dispersal. We investigate data protection issues in big data analysis in this thesis. We address a security or privacy concern in each phase of the data science pipeline. These phases are: i) data cleaning and preparation, ii) data management, iii) data modelling and analysis, and iv) data dissemination and visualization. In each of our contributions, we either address an existing problem and propose a resolving design (Chapters 2 and 4), or evaluate a current solution for a problem and analyze whether it meets the expected security/privacy goal (Chapters 3 and 5). Starting with privacy in data preparation, we investigate providing privacy in query analysis leveraging differential privacy techniques. We consider contextual outlier analysis and identify challenging queries that require releasing direct information about members of the dataset. We define a new sampling mechanism that allows releasing this information in a differentially private manner. Our second contribution is in the data modelling and analysis phase. We investigate the effect of data properties and application requirements on the successful implementation of privacy techniques. We in particular investigate the effects of data correlation on data protection guarantees of differential privacy. Our third contribution in this thesis is in the data management phase. The problem is to efficiently protecting the data that is outsourced to a database management system (DBMS) provider while still allowing join operation. We provide an encryption method to minimize the leakage and to guarantee confidentiality for the data efficiently. Our last contribution is in the data dissemination phase. We inspect the ownership/contract protection for the prediction models trained on the data. We evaluate the backdoor-based watermarking in deep neural networks which is an important and recent line of the work in model ownership/contract protection
    corecore