3,286 research outputs found

    A review of multi-factor authentication in the internet of healthcare things

    Get PDF
    Objective: This review paper aims to evaluate existing solutions in healthcare authentication and provides an insight into the technologies incorporated in Internet of Healthcare Things (IoHT) and multi-factor authentication (MFA) applications for next-generation authentication practices. Our review has two objectives: (a) Review MFA based on the challenges, impact and solutions discussed in the literature; and (b) define the security requirements of the IoHT as an approach to adapting MFA solutions in a healthcare context. Methods: To review the existing literature, we indexed articles from the IEEE Xplore, ACM Digital Library, ScienceDirect, and SpringerLink databases. The search was refined to combinations of ‘authentication’, ‘multi-factor authentication’, ‘Internet of Things authentication’, and ‘medical authentication’ to ensure that the retrieved journal articles and conference papers were relevant to healthcare and Internet of Things-oriented authentication research. Results: The concepts of MFA can be applied to healthcare where security can often be overlooked. The security requirements identified result in stronger methodologies of authentication such as hardware solutions in combination with biometric data to enhance MFA approaches. We identify the key vulnerabilities of weaker approaches to security such as password use against various cyber threats. Cyber threats and MFA solutions are categorised in this paper to facilitate readers’ understanding of them in healthcare domains. Conclusions: We contribute to an understanding of up-to-date MFA approaches and how they can be improved for use in the IoHT. This is achieved by discussing the challenges, benefits, and limitations of current methodologies and recommendations to improve access to eHealth resources through additional layers of security

    A novel image authenticationand rightful ownership detection framework based on DWT watermarking in cloud environment

    Get PDF
    Cloud computing has been highlighted by many organizations because of its benefits to use it anywhere. Efficiency, Easy access information, quick deployment, and a huge reduce of cost of using it, are some of the cloud advantages. While cost reduction is one of the great benefits of cloud, privacy protection of the users‘ data is also a significant issue of the cloud that cloud providers have to consider about. This is a vital component of the cloud‘s critical infrastructure. Cloud users use this environment to enable numerous online transactions crossways a widespread range of sectors and to exchange information. Especially, misuse of the users‘ data and private information are some of the important problems of using cloud environment. Cloud untrustworthy environment is a good area for hackers to steal user‘s stored data by Phishing and Pharming techniques. Therefore, cloud vendors should utilize easy- to-use, secure, and efficient environment. Besides they should prepare a way to access cloud services that promote data privacy and ownership protection. The more data privacy and ownership protection in cloud environment, the more users will attract to use this environment to put their important private data. In this study, a rightful ownership detection framework has been proposed to mitigate the ownership protection in cloud environment. Best methods for data privacy protection such as image authentication methods, watermarking methods and cryptographic methods, for mitigating the ownership protection problem to use in cloud environment, have been explored. Finally, efficiency and reliability of the proposed framework have been evaluated and analyzed

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view
    • 

    corecore