65 research outputs found

    Revisiting Adversarial Attacks on Graph Neural Networks for Graph Classification

    Full text link
    Graph neural networks (GNNs) have achieved tremendous success in the task of graph classification and its diverse downstream real-world applications. Despite the huge success in learning graph representations, current GNN models have demonstrated their vulnerability to potentially existent adversarial examples on graph-structured data. Existing approaches are either limited to structure attacks or restricted to local information, urging for the design of a more general attack framework on graph classification, which faces significant challenges due to the complexity of generating local-node-level adversarial examples using the global-graph-level information. To address this "global-to-local" attack challenge, we present a novel and general framework to generate adversarial examples via manipulating graph structure and node features. Specifically, we make use of Graph Class Activation Mapping and its variant to produce node-level importance corresponding to the graph classification task. Then through a heuristic design of algorithms, we can perform both feature and structure attacks under unnoticeable perturbation budgets with the help of both node-level and subgraph-level importance. Experiments towards attacking four state-of-the-art graph classification models on six real-world benchmarks verify the flexibility and effectiveness of our framework.Comment: 13 pages, 7 figure

    What Does the Gradient Tell When Attacking the Graph Structure

    Full text link
    Recent research has revealed that Graph Neural Networks (GNNs) are susceptible to adversarial attacks targeting the graph structure. A malicious attacker can manipulate a limited number of edges, given the training labels, to impair the victim model's performance. Previous empirical studies indicate that gradient-based attackers tend to add edges rather than remove them. In this paper, we present a theoretical demonstration revealing that attackers tend to increase inter-class edges due to the message passing mechanism of GNNs, which explains some previous empirical observations. By connecting dissimilar nodes, attackers can more effectively corrupt node features, making such attacks more advantageous. However, we demonstrate that the inherent smoothness of GNN's message passing tends to blur node dissimilarity in the feature space, leading to the loss of crucial information during the forward process. To address this issue, we propose a novel surrogate model with multi-level propagation that preserves the node dissimilarity information. This model parallelizes the propagation of unaggregated raw features and multi-hop aggregated features, while introducing batch normalization to enhance the dissimilarity in node representations and counteract the smoothness resulting from topological aggregation. Our experiments show significant improvement with our approach.Furthermore, both theoretical and experimental evidence suggest that adding inter-class edges constitutes an easily observable attack pattern. We propose an innovative attack loss that balances attack effectiveness and imperceptibility, sacrificing some attack effectiveness to attain greater imperceptibility. We also provide experiments to validate the compromise performance achieved through this attack loss
    • …
    corecore