4 research outputs found

    ???? 1

    Get PDF
    Abstract In this paper, we proposed a novel location estimation algorithm based on the concept of space-time signature matching in a moving target environment. In contrast to previous fingerprint-based approaches that rely on received signal strength (RSS) information only, the proposed algorithm uses angle, delay, and RSS information from the received signal to form a signature, which in turn is utilized for location estimation. We evaluated the performance of the proposed algorithm in terms of the average probability of error and the average error distance as a function of target movement. Simulation results confirmed the effectiveness of the proposed algorithm for location estimation even in moving target environment

    Location-dependent services for mobile users

    Get PDF
    Abstract—One of the main issues in mobile services ’ research (M-service) is supporting M-service availability, regardless of the user’s context (physical location, device employed, etc.). However, most scenarios also require the enforcement of context-awareness, to dynamically adapt M-services depending on the context in which they are requested. In this paper, we focus on the problem of adapting M-services depending on the users ’ location, whether physical (in space) or logical (within a specific distributed group/application). To this end, we propose a framework to model users ’ location via a multiplicity of local and active service contexts. First, service contexts represent the mean to access to M-services available within a physical locality. This leads to an intrinsic dependency of M-service on the users’ physical location. Second, the execution of service contexts can be tuned depending on who is requesting what M-service. This enables adapting M-services to the logical location of users (e.g., a request can lead to different executions for users belonging to different groups/applications). The paper firstly describes the framework in general terms, showing how it can facilitate the design of distributed applications involving mobile users as well as mobile agents. Then, it shows how the MARS coordination middleware, implementing service contexts in terms of programmable tuple spaces, can be used to develop and deploy applications and M-services coherently with the above framework. A case study is introduced and discussed through the paper to clarify our approach and to show its effectiveness. Index Terms—Context-awareness, coordination infrastructures, M-services, mobility, multiagent systems. I

    Context-aware και mHealth

    Get PDF

    Attaching Context-Aware Services to (Moving) Locations

    No full text
    Abstract — this paper describes novel support for attaching context-aware services to (possibly moving) physical locations or objects (GeoBots). The support enables context-aware user interaction by utilizing context information from the user, network, and sensors; as well as automated use of available wireless and mobile infrastructure relative to what the application tries to accomplish so as to minimize exposing such decisions to the user. We present our results from using GeoBots and examine provisioning of smart connectivity and mixed-reality services mediated by GeoBots in our prototype. Index Terms — adaptive systems, context-aware computing, mobile communication, and personal services. I
    corecore