94,473 research outputs found

    Making optical atomic clocks more stable with 101610^{-16} level laser stabilization

    Full text link
    The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2×10162 \times 10^{-16}. We use this laser as a stable optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz transition linewidth. With the stable laser source and the signal to noise ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of 5×1016/τ5 \times 10^{-16} / \sqrt{\tau}

    Investigations of laser pumped gas cell atomic frequency standard

    Get PDF
    The performance characteristics of a rubidium gas cell atomic frequency standard might be improved by replacing the standard rubidium discharge lamp with a single mode laser diode. Aspects of the laser pumped gas cell atomic clock studied include effects due to laser intensity, laser detuning, and the choice of the particular atomic absorption line. Results indicate that the performance of the gas cell clock may be improved by judicious choice of the operating parameters of the laser diode. The laser diode also proved to be a valuable tool in investigating the operation of the conventional gas cell clock. Results concerning linewidths, the light shift effect and the effect of isotopic spin exchange in the conventional gas cell clock are reported

    OPTIS - a satellite-based test of Special and General Relativity

    Get PDF
    A new satellite based test of Special and General Relativity is proposed. For the Michelson-Morley experiment we expect an improvement of at least three orders of magnitude, and for the Kennedy-Thorndike experiment an improvement of more than one order of magnitude. Furthermore, an improvement by two orders of the test of the universality of the gravitational red shift by comparison of an atomic clock with an optical clock is projected. The tests are based on ultrastable optical cavities, an atomic clock and a comb generator.Comment: To appear in Class. Quantum Gra

    Space-Time Reference with an Optical Link

    Full text link
    We describe a method for realizing a high-performance Space-Time Reference (STR) using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic concept is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a "frequency-flywheel" over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination (POD). With a well-defined orbit and a synchronized clock, the satellite cold serve as a high-accuracy Space-Time Reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. With reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination

    Search for transient ultralight dark matter signatures with networks of precision measurement devices using a Bayesian statistics method

    Full text link
    We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the Global Positioning System (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50,000km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.Comment: See also Supplementary Information located in ancillary file

    High accuracy measure of atomic polarizability in an optical lattice clock

    Full text link
    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (such as blackbody radiation) as the differential static polarizability of the ground and excited clock levels: 36.2612(7) kHz (kV/cm)^{-2}. The clock's fractional uncertainty due to room temperature blackbody radiation is reduced an order of magnitude to 3 \times 10^{-17}.Comment: 5 pages, 3 figures, 2 table

    The collisional frequency shift of a trapped-ion optical clock

    Full text link
    Collisions with background gas can perturb the transition frequency of trapped ions in an optical atomic clock. We develop a non-perturbative framework based on a quantum channel description of the scattering process, and use it to derive a master equation which leads to a simple analytic expression for the collisional frequency shift. As a demonstration of our method, we calculate the frequency shift of the Sr+^+ optical atomic clock transition due to elastic collisions with helium
    corecore