176,169 research outputs found

    Coaxial Atomic Force Microscope Tweezers

    Get PDF
    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force vs. applied voltage. We show that the coaxial AFM tweezers (CAT) can perform three dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.Comment: 9 pages, 3 figures, in review at Applied Physics Letter

    Scanned-cantilever atomic force microscope

    Get PDF
    We have developed a 3.6 µm scan range atomic force microscope that scans the cantilever instead of the sample, while the optical-lever detection apparatus remains stationary. The design permits simpler, more adaptable sample mounting, and generally improves ease of use. Software workarounds alleviate the minor effects of spurious signal variations that arise as a result of scanning the cantilever. The performance of the microscope matches that of scanned-sample instruments

    Fiber-top atomic force microscope

    Get PDF
    We present the implementation of an atomic force microscope (AFM) based on fiber-top design. Our results demonstrate that the performances of fiber-top AFMs in contact mode are comparable to those of similar commercially available instruments. Our device thus represents an interesting\ud alternative to existing AFMs, particularly for applications outside specialized research laboratories, where a compact, user-friendly, and versatile tool might often be preferred

    Atomic Force Microscope

    Get PDF
    The scanning tunneling microscope is proposed as a method to measure forces as small as 10−18 N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results in air demonstrate a lateral resolution of 30 ÅA and a vertical resolution less than 1 Å

    Models for quantitative charge imaging by atomic force microscopy

    Get PDF
    Two models are presented for quantitative charge imaging with an atomic-force microscope. The first is appropriate for noncontact mode and the second for intermittent contact (tapping) mode imaging. Different forms for the contact force are used to demonstrate that quantitative charge imaging is possible without precise knowledge of the contact interaction. From the models, estimates of the best charge sensitivity of an unbiased standard atomic-force microscope cantilever are found to be on the order of a few electrons

    Imaging spectroscopy with the atomic force microscope

    Get PDF
    Force curve imaging spectroscopy involves acquiring a force-distance curve at each pixel of an atomic force microscope image. Processing of the resulting data yields images of sample hardness and tip-sample adhesion. These images resemble Z modulation images and the sum of forward and reverse friction images, respectively, and like them exhibit a number of potentially misleading contrast mechanisms. In particular, XY tip motion has a pronounced effect on hardness images and the meniscus force on adhesion images

    Polymerized LB films imaged with a combined atomic force microscope-fluorescence microscope

    Get PDF
    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microscope enables a direct comparison between features observed in the fluorescence microscope and those observed in the images obtained with the AFM, in air or under liquid. The cracks in polymerized Langmuir-Blodgett films of lO,l2-pentacosadiynoic acid as observed in the fluorescence microscope run parallel to one of the lattice directions of the crystal as revealed by molecular resolution images obtained with the AFM. The orientation of these cracks also coincides with the polarization direction of the fluorescent light, indicating that the cracks run along the polymer backbone. Ripple-like corrugations on a submicrometer scale have been observed, which may be due to mechanical stress created during the polymerization process
    corecore