32,339 research outputs found

    Byzantine Approximate Agreement on Graphs

    Get PDF
    Consider a distributed system with n processors out of which f can be Byzantine faulty. In the approximate agreement task, each processor i receives an input value x_i and has to decide on an output value y_i such that 1) the output values are in the convex hull of the non-faulty processors\u27 input values, 2) the output values are within distance d of each other. Classically, the values are assumed to be from an m-dimensional Euclidean space, where m >= 1. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph G and the goal is to output vertices that are within distance d of each other in G, but still remain in the graph-induced convex hull of the input values. For d=0, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any d >= 1, we show that the task is solvable in asynchronous systems when G is chordal and n > (omega+1)f, where omega is the clique number of G. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring
    corecore