5,836 research outputs found

    Asynchronous Decentralized Optimization in Directed Networks

    Full text link
    A popular asynchronous protocol for decentralized optimization is randomized gossip where a pair of neighbors concurrently update via pairwise averaging. In practice, this creates deadlocks and is vulnerable to information delays. It can also be problematic if a node is unable to response or has only access to its private-preserved local dataset. To address these issues simultaneously, this paper proposes an asynchronous decentralized algorithm, i.e. APPG, with {\em directed} communication where each node updates {\em asynchronously} and independently of any other node. If local functions are strongly-convex with Lipschitz-continuous gradients, each node of APPG converges to the same optimal solution at a rate of O(λk)O(\lambda^k), where λ∈(0,1)\lambda\in(0,1) and the virtual counter kk increases by 1 no matter on which node updates. The superior performance of APPG is validated on a logistic regression problem against state-of-the-art methods in terms of linear speedup and system implementations

    Push-Pull Gradient Methods for Distributed Optimization in Networks

    Full text link
    In this paper, we focus on solving a distributed convex optimization problem in a network, where each agent has its own convex cost function and the goal is to minimize the sum of the agents' cost functions while obeying the network connectivity structure. In order to minimize the sum of the cost functions, we consider new distributed gradient-based methods where each node maintains two estimates, namely, an estimate of the optimal decision variable and an estimate of the gradient for the average of the agents' objective functions. From the viewpoint of an agent, the information about the gradients is pushed to the neighbors, while the information about the decision variable is pulled from the neighbors hence giving the name "push-pull gradient methods". The methods utilize two different graphs for the information exchange among agents, and as such, unify the algorithms with different types of distributed architecture, including decentralized (peer-to-peer), centralized (master-slave), and semi-centralized (leader-follower) architecture. We show that the proposed algorithms and their many variants converge linearly for strongly convex and smooth objective functions over a network (possibly with unidirectional data links) in both synchronous and asynchronous random-gossip settings. In particular, under the random-gossip setting, "push-pull" is the first class of algorithms for distributed optimization over directed graphs. Moreover, we numerically evaluate our proposed algorithms in both scenarios, and show that they outperform other existing linearly convergent schemes, especially for ill-conditioned problems and networks that are not well balanced.Comment: Parts of the results appear in Proceedings of the 57th IEEE Conference on Decision and Control (see arXiv:1803.07588

    A Robust Gradient Tracking Method for Distributed Optimization over Directed Networks

    Full text link
    In this paper, we consider the problem of distributed consensus optimization over multi-agent networks with directed network topology. Assuming each agent has a local cost function that is smooth and strongly convex, the global objective is to minimize the average of all the local cost functions. To solve the problem, we introduce a robust gradient tracking method (R-Push-Pull) adapted from the recently proposed Push-Pull/AB algorithm. R-Push-Pull inherits the advantages of Push-Pull and enjoys linear convergence to the optimal solution with exact communication. Under noisy information exchange, R-Push-Pull is more robust than the existing gradient tracking based algorithms; the solutions obtained by each agent reach a neighborhood of the optimum in expectation exponentially fast under a constant stepsize policy. We provide a numerical example that demonstrate the effectiveness of R-Push-Pull

    Toward Creating Subsurface Camera

    Full text link
    In this article, the framework and architecture of Subsurface Camera (SAMERA) is envisioned and described for the first time. A SAMERA is a geophysical sensor network that senses and processes geophysical sensor signals, and computes a 3D subsurface image in-situ in real-time. The basic mechanism is: geophysical waves propagating/reflected/refracted through subsurface enter a network of geophysical sensors, where a 2D or 3D image is computed and recorded; a control software may be connected to this network to allow view of the 2D/3D image and adjustment of settings such as resolution, filter, regularization and other algorithm parameters. System prototypes based on seismic imaging have been designed. SAMERA technology is envisioned as a game changer to transform many subsurface survey and monitoring applications, including oil/gas exploration and production, subsurface infrastructures and homeland security, wastewater and CO2 sequestration, earthquake and volcano hazard monitoring. The system prototypes for seismic imaging have been built. Creating SAMERA requires an interdisciplinary collaboration and transformation of sensor networks, signal processing, distributed computing, and geophysical imaging.Comment: 15 pages, 7 figure

    Approximate Projection Methods for Decentralized Optimization with Functional Constraints

    Full text link
    We consider distributed convex optimization problems that involve a separable objective function and nontrivial functional constraints, such as Linear Matrix Inequalities (LMIs). We propose a decentralized and computationally inexpensive algorithm which is based on the concept of approximate projections. Our algorithm is one of the consensus based methods in that, at every iteration, each agent performs a consensus update of its decision variables followed by an optimization step of its local objective function and local constraints. Unlike other methods, the last step of our method is not an Euclidean projection onto the feasible set, but instead a subgradient step in the direction that minimizes the local constraint violation. We propose two different averaging schemes to mitigate the disagreements among the agents' local estimates. We show that the algorithms converge almost surely, i.e., every agent agrees on the same optimal solution, under the assumption that the objective functions and constraint functions are nondifferentiable and their subgradients are bounded. We provide simulation results on a decentralized optimal gossip averaging problem, which involves SDP constraints, to complement our theoretical results

    A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates

    Full text link
    This paper proposes a novel proximal-gradient algorithm for a decentralized optimization problem with a composite objective containing smooth and non-smooth terms. Specifically, the smooth and nonsmooth terms are dealt with by gradient and proximal updates, respectively. The proposed algorithm is closely related to a previous algorithm, PG-EXTRA \cite{shi2015proximal}, but has a few advantages. First of all, agents use uncoordinated step-sizes, and the stable upper bounds on step-sizes are independent of network topologies. The step-sizes depend on local objective functions, and they can be as large as those of the gradient descent. Secondly, for the special case without non-smooth terms, linear convergence can be achieved under the strong convexity assumption. The dependence of the convergence rate on the objective functions and the network are separated, and the convergence rate of the new algorithm is as good as one of the two convergence rates that match the typical rates for the general gradient descent and the consensus averaging. We provide numerical experiments to demonstrate the efficacy of the introduced algorithm and validate our theoretical discoveries

    Asynchronous Decentralized 20 Questions for Adaptive Search

    Full text link
    This paper considers the problem of adaptively searching for an unknown target using multiple agents connected through a time-varying network topology. Agents are equipped with sensors capable of fast information processing, and we propose a decentralized collaborative algorithm for controlling their search given noisy observations. Specifically, we propose decentralized extensions of the adaptive query-based search strategy that combines elements from the 20 questions approach and social learning. Under standard assumptions on the time-varying network dynamics, we prove convergence to correct consensus on the value of the parameter as the number of iterations go to infinity. The convergence analysis takes a novel approach using martingale-based techniques combined with spectral graph theory. Our results establish that stability and consistency can be maintained even with one-way updating and randomized pairwise averaging, thus providing a scalable low complexity method with performance guarantees. We illustrate the effectiveness of our algorithm for random network topologies.Comment: 19 pages, Submitted. arXiv admin note: substantial text overlap with arXiv:1312.784

    Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions

    Full text link
    We consider the standard model of distributed optimization of a sum of functions F(\bz) = \sum_{i=1}^n f_i(\bz), where node ii in a network holds the function f_i(\bz). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that \begin{enumerate*}[label=(\roman*)] \item node ii is capable of generating gradients of its function f_i(\bz) corrupted by zero-mean bounded-support additive noise at each step, \item F(\bz) is strongly convex, and \item each f_i(\bz) has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions f_1(\bz), \ldots, f_n(\bz) at each step

    Achieving Geometric Convergence for Distributed Optimization over Time-Varying Graphs

    Full text link
    This paper considers the problem of distributed optimization over time-varying graphs. For the case of undirected graphs, we introduce a distributed algorithm, referred to as DIGing, based on a combination of a distributed inexact gradient method and a gradient tracking technique. The DIGing algorithm uses doubly stochastic mixing matrices and employs fixed step-sizes and, yet, drives all the agents' iterates to a global and consensual minimizer. When the graphs are directed, in which case the implementation of doubly stochastic mixing matrices is unrealistic, we construct an algorithm that incorporates the push-sum protocol into the DIGing structure, thus obtaining Push-DIGing algorithm. The Push-DIGing uses column stochastic matrices and fixed step-sizes, but it still converges to a global and consensual minimizer. Under the strong convexity assumption, we prove that the algorithms converge at R-linear (geometric) rates as long as the step-sizes do not exceed some upper bounds. We establish explicit estimates for the convergence rates. When the graph is undirected it shows that DIGing scales polynomially in the number of agents. We also provide some numerical experiments to demonstrate the efficacy of the proposed algorithms and to validate our theoretical findings

    Distributed Nesterov gradient methods over arbitrary graphs

    Full text link
    In this letter, we introduce a distributed Nesterov method, termed as ABN\mathcal{ABN}, that does not require doubly-stochastic weight matrices. Instead, the implementation is based on a simultaneous application of both row- and column-stochastic weights that makes this method applicable to arbitrary (strongly-connected) graphs. Since constructing column-stochastic weights needs additional information (the number of outgoing neighbors at each agent), not available in certain communication protocols, we derive a variation, termed as FROZEN, that only requires row-stochastic weights but at the expense of additional iterations for eigenvector learning. We numerically study these algorithms for various objective functions and network parameters and show that the proposed distributed Nesterov methods achieve acceleration compared to the current state-of-the-art methods for distributed optimization
    • …
    corecore