7 research outputs found

    Asynchronous Convolutional Networks for Object Detection in Neuromorphic Cameras

    Get PDF
    Event-based cameras, also known as neuromorphic cameras, are bioinspired sensors able to perceive changes in the scene at high frequency with low power consumption. Becoming available only very recently, a limited amount of work addresses object detection on these devices. In this paper we propose two neural networks architectures for object detection: YOLE, which integrates the events into surfaces and uses a frame-based model to process them, and fcYOLE, an asynchronous event-based fully convolutional network which uses a novel and general formalization of the convolutional and max pooling layers to exploit the sparsity of camera events. We evaluate the algorithm with different extensions of publicly available datasets and on a novel synthetic dataset.Comment: accepted at CVPR2019 Event-based Vision Worksho

    Attention Mechanisms for Object Recognition with Event-Based Cameras

    Full text link
    Event-based cameras are neuromorphic sensors capable of efficiently encoding visual information in the form of sparse sequences of events. Being biologically inspired, they are commonly used to exploit some of the computational and power consumption benefits of biological vision. In this paper we focus on a specific feature of vision: visual attention. We propose two attentive models for event based vision: an algorithm that tracks events activity within the field of view to locate regions of interest and a fully-differentiable attention procedure based on DRAW neural model. We highlight the strengths and weaknesses of the proposed methods on four datasets, the Shifted N-MNIST, Shifted MNIST-DVS, CIFAR10-DVS and N-Caltech101 collections, using the Phased LSTM recognition network as a baseline reference model obtaining improvements in terms of both translation and scale invariance.Comment: WACV2019 camera-ready submissio

    EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning

    Full text link
    Event cameras sense intensity changes and have many advantages over conventional cameras. To take advantage of event cameras, some methods have been proposed to reconstruct intensity images from event streams. However, the outputs are still in low resolution (LR), noisy, and unrealistic. The low-quality outputs stem broader applications of event cameras, where high spatial resolution (HR) is needed as well as high temporal resolution, dynamic range, and no motion blur. We consider the problem of reconstructing and super-resolving intensity images from LR events, when no ground truth (GT) HR images and down-sampling kernels are available. To tackle the challenges, we propose a novel end-to-end pipeline that reconstructs LR images from event streams, enhances the image qualities and upsamples the enhanced images, called EventSR. For the absence of real GT images, our method is primarily unsupervised, deploying adversarial learning. To train EventSR, we create an open dataset including both real-world and simulated scenes. The use of both datasets boosts up the network performance, and the network architectures and various loss functions in each phase help improve the image qualities. The whole pipeline is trained in three phases. While each phase is mainly for one of the three tasks, the networks in earlier phases are fine-tuned by respective loss functions in an end-to-end manner. Experimental results show that EventSR reconstructs high-quality SR images from events for both simulated and real-world data.Comment: Accepted by CVPR 202
    corecore