2,839 research outputs found

    Active sequential hypothesis testing

    Full text link
    Consider a decision maker who is responsible to dynamically collect observations so as to enhance his information about an underlying phenomena of interest in a speedy manner while accounting for the penalty of wrong declaration. Due to the sequential nature of the problem, the decision maker relies on his current information state to adaptively select the most ``informative'' sensing action among the available ones. In this paper, using results in dynamic programming, lower bounds for the optimal total cost are established. The lower bounds characterize the fundamental limits on the maximum achievable information acquisition rate and the optimal reliability. Moreover, upper bounds are obtained via an analysis of two heuristic policies for dynamic selection of actions. It is shown that the first proposed heuristic achieves asymptotic optimality, where the notion of asymptotic optimality, due to Chernoff, implies that the relative difference between the total cost achieved by the proposed policy and the optimal total cost approaches zero as the penalty of wrong declaration (hence the number of collected samples) increases. The second heuristic is shown to achieve asymptotic optimality only in a limited setting such as the problem of a noisy dynamic search. However, by considering the dependency on the number of hypotheses, under a technical condition, this second heuristic is shown to achieve a nonzero information acquisition rate, establishing a lower bound for the maximum achievable rate and error exponent. In the case of a noisy dynamic search with size-independent noise, the obtained nonzero rate and error exponent are shown to be maximum.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1144 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Compressive Mining: Fast and Optimal Data Mining in the Compressed Domain

    Full text link
    Real-world data typically contain repeated and periodic patterns. This suggests that they can be effectively represented and compressed using only a few coefficients of an appropriate basis (e.g., Fourier, Wavelets, etc.). However, distance estimation when the data are represented using different sets of coefficients is still a largely unexplored area. This work studies the optimization problems related to obtaining the \emph{tightest} lower/upper bound on Euclidean distances when each data object is potentially compressed using a different set of orthonormal coefficients. Our technique leads to tighter distance estimates, which translates into more accurate search, learning and mining operations \textit{directly} in the compressed domain. We formulate the problem of estimating lower/upper distance bounds as an optimization problem. We establish the properties of optimal solutions, and leverage the theoretical analysis to develop a fast algorithm to obtain an \emph{exact} solution to the problem. The suggested solution provides the tightest estimation of the L2L_2-norm or the correlation. We show that typical data-analysis operations, such as k-NN search or k-Means clustering, can operate more accurately using the proposed compression and distance reconstruction technique. We compare it with many other prevalent compression and reconstruction techniques, including random projections and PCA-based techniques. We highlight a surprising result, namely that when the data are highly sparse in some basis, our technique may even outperform PCA-based compression. The contributions of this work are generic as our methodology is applicable to any sequential or high-dimensional data as well as to any orthogonal data transformation used for the underlying data compression scheme.Comment: 25 pages, 20 figures, accepted in VLD

    Bounding Optimality Gap in Stochastic Optimization via Bagging: Statistical Efficiency and Stability

    Full text link
    We study a statistical method to estimate the optimal value, and the optimality gap of a given solution for stochastic optimization as an assessment of the solution quality. Our approach is based on bootstrap aggregating, or bagging, resampled sample average approximation (SAA). We show how this approach leads to valid statistical confidence bounds for non-smooth optimization. We also demonstrate its statistical efficiency and stability that are especially desirable in limited-data situations, and compare these properties with some existing methods. We present our theory that views SAA as a kernel in an infinite-order symmetric statistic, which can be approximated via bagging. We substantiate our theoretical findings with numerical results
    corecore