94 research outputs found

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (dd-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff. In addition, we investigate the minimum energy required to reproduce kk source samples with a given fidelity after transmission over a memoryless Gaussian channel, and we show that the required minimum energy is reduced with feedback and an average (rather than maximal) power constraint.Comment: To appear in IEEE Transactions on Information Theor

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (d-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff

    Exact Moderate Deviation Asymptotics in Streaming Data Transmission

    Full text link
    In this paper, a streaming transmission setup is considered where an encoder observes a new message in the beginning of each block and a decoder sequentially decodes each message after a delay of TT blocks. In this streaming setup, the fundamental interplay between the coding rate, the error probability, and the blocklength in the moderate deviations regime is studied. For output symmetric channels, the moderate deviations constant is shown to improve over the block coding or non-streaming setup by exactly a factor of TT for a certain range of moderate deviations scalings. For the converse proof, a more powerful decoder to which some extra information is fedforward is assumed. The error probability is bounded first for an auxiliary channel and this result is translated back to the original channel by using a newly developed change-of-measure lemma, where the speed of decay of the remainder term in the exponent is carefully characterized. For the achievability proof, a known coding technique that involves a joint encoding and decoding of fresh and past messages is applied with some manipulations in the error analysis.Comment: 23 pages, 1 figure, 1 table, Submitted to IEEE Transactions on Information Theor

    Minimum Energy to Send k Bits Through the Gaussian Channel With and Without Feedback

    Get PDF
    The minimum achievable energy per bit over memoryless Gaussian channels has been previously addressed in the limit when the number of information bits goes to infinity, in which case it is known that the availability of noiseless feedback does not lower the minimum energy per bit, which is -1.59 dB below the noise level. This paper analyzes the behavior of the minimum energy per bit for memoryless Gaussian channels as a function of k, the number of information bits. It is demonstrated that in this nonasymptotic regime, noiseless feedback leads to significantly better energy efficiency. In particular, without feedback achieving energy per bit of -1.57 dB requires coding over at least k=10[superscript 6] information bits, while we construct a feedback scheme that transmits a single information bit with energy -1.59 dB and zero error. We also show that unless k is very small, approaching the minimal energy per bit does not require using the feedback link except to signal that transmission should stop.National Science Foundation (U.S.) (Grant CCF-06-35154)National Science Foundation (U.S.) (grant CNS-09-05398
    corecore