28 research outputs found

    Random tree growth by vertex splitting

    Full text link
    We study a model of growing planar tree graphs where in each time step we separate the tree into two components by splitting a vertex and then connect the two pieces by inserting a new link between the daughter vertices. This model generalises the preferential attachment model and Ford's α\alpha-model for phylogenetic trees. We develop a mean field theory for the vertex degree distribution, prove that the mean field theory is exact in some special cases and check that it agrees with numerical simulations in general. We calculate various correlation functions and show that the intrinsic Hausdorff dimension can vary from one to infinity, depending on the parameters of the model.Comment: 47 page

    From trees to graphs: collapsing continuous-time branching processes

    Full text link
    Continuous-time branching processes (CTBPs) are powerful tools in random graph theory, but are not appropriate to describe real-world networks, since they produce trees rather than (multi)graphs. In this paper we analyze collapsed branching processes (CBPs), obtained by a collapsing procedure on CTBPs, in order to define multigraphs where vertices have fixed out-degree m≥2m\geq 2. A key example consists of preferential attachment models (PAMs), as well as generalized PAMs where vertices are chosen according to their degree and age. We identify the degree distribution of CBPs, showing that it is closely related to the limiting distribution of the CTBP before collapsing. In particular, this is the first time that CTBPs are used to investigate the degree distribution of PAMs beyond the tree setting.Comment: 18 pages, 3 figure

    Random recursive trees: A boundary theory approach

    Get PDF
    We show that an algorithmic construction of sequences of recursive trees leads to a direct proof of the convergence of random recursive trees in an associated Doob-Martin compactification; it also gives a representation of the limit in terms of the input sequence of the algorithm. We further show that this approach can be used to obtain strong limit theorems for various tree functionals, such as path length or the Wiener index

    Plane recursive trees, Stirling permutations and an urn model

    Get PDF
    We exploit a bijection between plane recursive trees and Stirling permutations; this yields the equivalence of some results previously proven separately by different methods for the two types of objects as well as some new results. We also prove results on the joint distribution of the numbers of ascents, descents and plateaux in a random Stirling permutation. The proof uses an interesting generalized Pólya urn
    corecore