1,776 research outputs found

    Understanding CHOKe: throughput and spatial characteristics

    Get PDF
    A recently proposed active queue management, CHOKe, is stateless, simple to implement, yet surprisingly effective in protecting TCP from UDP flows. We present an equilibrium model of TCP/CHOKe. We prove that, provided the number of TCP flows is large, the UDP bandwidth share peaks at (e+1)/sup -1/=0.269 when UDP input rate is slightly larger than link capacity, and drops to zero as UDP input rate tends to infinity. We clarify the spatial characteristics of the leaky buffer under CHOKe that produce this throughput behavior. Specifically, we prove that, as UDP input rate increases, even though the total number of UDP packets in the queue increases, their spatial distribution becomes more and more concentrated near the tail of the queue, and drops rapidly to zero toward the head of the queue. In stark contrast to a nonleaky FIFO buffer where UDP bandwidth shares would approach 1 as its input rate increases without bound, under CHOKe, UDP simultaneously maintains a large number of packets in the queue and receives a vanishingly small bandwidth share, the mechanism through which CHOKe protects TCP flows

    First-Passage Time and Large-Deviation Analysis for Erasure Channels with Memory

    Full text link
    This article considers the performance of digital communication systems transmitting messages over finite-state erasure channels with memory. Information bits are protected from channel erasures using error-correcting codes; successful receptions of codewords are acknowledged at the source through instantaneous feedback. The primary focus of this research is on delay-sensitive applications, codes with finite block lengths and, necessarily, non-vanishing probabilities of decoding failure. The contribution of this article is twofold. A methodology to compute the distribution of the time required to empty a buffer is introduced. Based on this distribution, the mean hitting time to an empty queue and delay-violation probabilities for specific thresholds can be computed explicitly. The proposed techniques apply to situations where the transmit buffer contains a predetermined number of information bits at the onset of the data transfer. Furthermore, as additional performance criteria, large deviation principles are obtained for the empirical mean service time and the average packet-transmission time associated with the communication process. This rigorous framework yields a pragmatic methodology to select code rate and block length for the communication unit as functions of the service requirements. Examples motivated by practical systems are provided to further illustrate the applicability of these techniques.Comment: To appear in IEEE Transactions on Information Theor

    Asymptotic analysis by the saddle point method of the Anick-Mitra-Sondhi model

    Full text link
    We consider a fluid queue where the input process consists of N identical sources that turn on and off at exponential waiting times. The server works at the constant rate c and an on source generates fluid at unit rate. This model was first formulated and analyzed by Anick, Mitra and Sondhi. We obtain an alternate representation of the joint steady state distribution of the buffer content and the number of on sources. This is given as a contour integral that we then analyze for large N. We give detailed asymptotic results for the joint distribution, as well as the associated marginal and conditional distributions. In particular, simple conditional limits laws are obtained. These shows how the buffer content behaves conditioned on the number of active sources and vice versa. Numerical comparisons show that our asymptotic results are very accurate even for N=20

    A Systematic Approach to Incremental Redundancy over Erasure Channels

    Full text link
    As sensing and instrumentation play an increasingly important role in systems controlled over wired and wireless networks, the need to better understand delay-sensitive communication becomes a prime issue. Along these lines, this article studies the operation of data links that employ incremental redundancy as a practical means to protect information from the effects of unreliable channels. Specifically, this work extends a powerful methodology termed sequential differential optimization to choose near-optimal block sizes for hybrid ARQ over erasure channels. In doing so, an interesting connection between random coding and well-known constants in number theory is established. Furthermore, results show that the impact of the coding strategy adopted and the propensity of the channel to erase symbols naturally decouple when analyzing throughput. Overall, block size selection is motivated by normal approximations on the probability of decoding success at every stage of the incremental transmission process. This novel perspective, which rigorously bridges hybrid ARQ and coding, offers a pragmatic means to select code rates and blocklengths for incremental redundancy.Comment: 7 pages, 2 figures; A shorter version of this article will appear in the proceedings of ISIT 201
    • …
    corecore