17,209 research outputs found

    Statistical and Computational Tradeoffs in Stochastic Composite Likelihood

    Get PDF
    Maximum likelihood estimators are often of limited practical use due to the intensive computation they require. We propose a family of alternative estimators that maximize a stochastic variation of the composite likelihood function. Each of the estimators resolve the computation-accuracy tradeoff differently, and taken together they span a continuous spectrum of computation-accuracy tradeoff resolutions. We prove the consistency of the estimators, provide formulas for their asymptotic variance, statistical robustness, and computational complexity. We discuss experimental results in the context of Boltzmann machines and conditional random fields. The theoretical and experimental studies demonstrate the effectiveness of the estimators when the computational resources are insufficient. They also demonstrate that in some cases reduced computational complexity is associated with robustness thereby increasing statistical accuracy.Comment: 30 pages, 97 figures, 2 author

    Optimality of estimators for misspecified semi-Markov models

    Full text link
    Suppose we observe a geometrically ergodic semi-Markov process and have a parametric model for the transition distribution of the embedded Markov chain, for the conditional distribution of the inter-arrival times, or for both. The first two models for the process are semiparametric, and the parameters can be estimated by conditional maximum likelihood estimators. The third model for the process is parametric, and the parameter can be estimated by an unconditional maximum likelihood estimator. We determine heuristically the asymptotic distributions of these estimators and show that they are asymptotically efficient. If the parametric models are not correct, the (conditional) maximum likelihood estimators estimate the parameter that maximizes the Kullback--Leibler information. We show that they remain asymptotically efficient in a nonparametric sense.Comment: To appear in a Special Volume of Stochastics: An International Journal of Probability and Stochastic Processes (http://www.informaworld.com/openurl?genre=journal%26issn=1744-2508) edited by N.H. Bingham and I.V. Evstigneev which will be reprinted as Volume 57 of the IMS Lecture Notes Monograph Series (http://imstat.org/publications/lecnotes.htm

    Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes

    Full text link
    Composite likelihoods are increasingly used in applications where the full likelihood is analytically unknown or computationally prohibitive. Although the maximum composite likelihood estimator has frequentist properties akin to those of the usual maximum likelihood estimator, Bayesian inference based on composite likelihoods has yet to be explored. In this paper we investigate the use of the Metropolis--Hastings algorithm to compute a pseudo-posterior distribution based on the composite likelihood. Two methodologies for adjusting the algorithm are presented and their performance on approximating the true posterior distribution is investigated using simulated data sets and real data on spatial extremes of rainfall

    Conditional ergodicity in infinite dimension

    Full text link
    The goal of this paper is to develop a general method to establish conditional ergodicity of infinite-dimensional Markov chains. Given a Markov chain in a product space, we aim to understand the ergodic properties of its conditional distributions given one of the components. Such questions play a fundamental role in the ergodic theory of nonlinear filters. In the setting of Harris chains, conditional ergodicity has been established under general nondegeneracy assumptions. Unfortunately, Markov chains in infinite-dimensional state spaces are rarely amenable to the classical theory of Harris chains due to the singularity of their transition probabilities, while topological and functional methods that have been developed in the ergodic theory of infinite-dimensional Markov chains are not well suited to the investigation of conditional distributions. We must therefore develop new measure-theoretic tools in the ergodic theory of Markov chains that enable the investigation of conditional ergodicity for infinite dimensional or weak-* ergodic processes. To this end, we first develop local counterparts of zero-two laws that arise in the theory of Harris chains. These results give rise to ergodic theorems for Markov chains that admit asymptotic couplings or that are locally mixing in the sense of H. F\"{o}llmer, and to a non-Markovian ergodic theorem for stationary absolutely regular sequences. We proceed to show that local ergodicity is inherited by conditioning on a nondegenerate observation process. This is used to prove stability and unique ergodicity of the nonlinear filter. Finally, we show that our abstract results can be applied to infinite-dimensional Markov processes that arise in several settings, including dissipative stochastic partial differential equations, stochastic spin systems and stochastic differential delay equations.Comment: Published in at http://dx.doi.org/10.1214/13-AOP879 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The stability of conditional Markov processes and Markov chains in random environments

    Full text link
    We consider a discrete time hidden Markov model where the signal is a stationary Markov chain. When conditioned on the observations, the signal is a Markov chain in a random environment under the conditional measure. It is shown that this conditional signal is weakly ergodic when the signal is ergodic and the observations are nondegenerate. This permits a delicate exchange of the intersection and supremum of σ\sigma-fields, which is key for the stability of the nonlinear filter and partially resolves a long-standing gap in the proof of a result of Kunita [J. Multivariate Anal. 1 (1971) 365--393]. A similar result is obtained also in the continuous time setting. The proofs are based on an ergodic theorem for Markov chains in random environments in a general state space.Comment: Published in at http://dx.doi.org/10.1214/08-AOP448 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore