16 research outputs found

    Multicast scheduling in feedback-based two-stage switch

    Get PDF
    Proceedings of the IEEE Workshop on High Performance Switching and Routing, 2009, p. 28-33Scalability is of paramount importance in high-speed switch design. Two limiting factors are the complexity of switch fabric and the need for a sophisticated central scheduler. In this paper, we focus on designing a scalable multicast switch. Given the fact that the majority traffic on the Internet is unicast, a cost-effective solution is to adopt a unicast switch fabric for handling both unicast and multicast traffic. Unlike existing approaches, we choose to base our multicast switch design on the load-balanced two-stage switch architecture because it does not require a central scheduler, and its unicast switch fabric only needs to realize N switch configurations. Specifically, we adopt the feedback-based two-stage switch architecture [10], because it elegantly solves the notorious packet mis-sequencing problem, and yet renders an excellent throughput-delay performance. By slightly modifying the operation of the original feedback-based two-stage switch, a simple distributed multicast scheduling algorithm is proposed. Simulation results show that with packet duplication at both input ports and middle-stage ports, the proposed multicast scheduling algorithm significantly cuts down the average packet delay and delay variation among different copies of the same multicast packet. Keywords-Feedback-based two-stage switch, scalable multicast switch, load-balanced switch. © 2009 IEEE.published_or_final_versio

    Scaling High-Performance Interconnect Architectures to Many-Core Systems.

    Full text link
    The ever-increasing demand for performance scaling has made multi-core (2-8 cores) chips prevalent in today’s computing systems and foreshadows the shift toward many-core (10s- 100s of cores) chips in the near future. Although the potential performance gains from many-core systems remain appealing, the widespread adoption of these systems hinges on their ability to scale performance while simultaneously satisfying Quality-of-Service (QoS) and energy-efficiency constraints. This work makes the case that the interconnect for these many-core systems has a significant impact on the aforementioned scalability issues. The impact of interconnects on many-core systems is illustrated by observing that the degree of the interconnect has a signicant effect on system scalability and demonstrating that the architecture of high-radix, many-core systems are feasible, energy-efficient, and high-performance. The feasibility of high-radix crossbars for many-core systems is first shown through a new circuit-level building block called the Swizzle-Switch which can operate at frequencies up to 1.5GHz for 128-bit, radix-64 crossbars. This work then shows how a many-core system called the Swizzle-Switch Network (SSN) can use the Swizzle-Switch as the central building block for a flat crossbar interconnect. The SSN is shown to be advantageous to traditional Network-on-Chip (NoC) for systems up to 64 cores. The SSN performance by 21% relative to a Mesh while also providing a 25% energy savings over the Mesh. The Swizzle-Switch is also leveraged as a building block for high-radix NoC topologies that can support many-core architectures. The Swizzle-Switch-based Flattened Butterfly topology is demonstrated to provide a 15% speedup and 10% energy savings over the Mesh. Finally, the impact that 3D stacking technology has on many-core scalability is evaluated for bus and crossbar interconnects. A 3D-optimized Swizzle-Switch Network is able to leverage frequency gains to achieve a 15-28% speedup over a 2D-Swizzle-Switch Network when using memory- intensive benchmarks. Additionally, a bus-based 64-core architecture is shown to provide an average speedup of 49× over a baseline uniprocessor system when using 3D technology.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/93980/1/ksewell_1.pd

    On packet switch design

    Get PDF

    Tiled microprocessors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 251-258).Current-day microprocessors have reached the point of diminishing returns due to inherent scalability limitations. This thesis examines the tiled microprocessor, a class of microprocessor which is physically scalable but inherits many of the desirable properties of conventional microprocessors. Tiled microprocessors are composed of an array of replicated tiles connected by a special class of network, the Scalar Operand Network (SON), which is optimized for low-latency, low-occupancy communication between remote ALUs on different tiles. Tiled microprocessors can be constructed to scale to 100's or 1000's of functional units. This thesis identifies seven key criteria for achieving physical scalability in tiled microprocessors. It employs an archetypal tiled microprocessor to examine the challenges in achieving these criteria and to explore the properties of Scalar Operand Networks. The thesis develops the field of SONs in three major ways: it introduces the 5-tuple performance metric, it describes a complete, high-frequency SON implementation, and it proposes a taxonomy, called AsTrO, for categorizing them.(cont.) To develop these ideas, the thesis details the design, implementation and analysis of a tiled microprocessor prototype, the Raw Microprocessor, which was implemented at MIT in 180 nm technology. Overall, compared to Raw, recent commercial processors with half the transistors required 30x as many lines of code, occupied 100x as many designers, contained 50x as many pre-tapeout bugs, and resulted in 33x as many post-tapeout bugs. At the same time, the Raw microprocessor proves to be more versatile in exploiting ILP, stream, and server-farm workloads with modest to large amounts of parallelism.by Michael Bedford Taylor.Ph.D

    Adaptive Hybrid Switching Technique for Parallel Computing System

    Get PDF
    Parallel processing accelerates computations by solving a single problem using multiple compute nodes interconnected by a network. The scalability of a parallel system is limited byits ability to communicate and coordinate processing. Circuit switching, packet switchingand wormhole routing are dominant switching techniques. Our simulation results show that wormhole routing and circuit switching each excel under different types of traffic.This dissertation presents a hybrid switching technique that combines wormhole routing with circuit switching in a single switch using vrtual channels and time division multiplexing. The performance of this hybrid switch is significantly impacted by the effciency of traffic scheduling and thus, this dissertation also explores the design and scalability of hardware scheduling for the hybrid switch. In particular, we introduce two schedulers for crossbar networks: a greedy scheduler and an optimal scheduler that improves upon the resultsprovided by the greedy scheduler. For the time division multiplexing portion of the hybrid switch, this dissertation presents three allocation methods that combine wormhole switching with predictive circuit switching. We further extend this research from crossbar networks to fat tree interconnected networks with virtual channels. The global "level-wise" scheduling algorithm is presented and improves network utilization by 30% when compared to a switch-level algorithm. The performance of the hybrid switching is evaluated on a cycle accurate simulation framework that is also part of this dissertation research. Our experimental results demonstrate that the hybrid switch is capable of transferring both predictable traffics and unpredictable traffics successfully. By dynamically selecting the proper switching technique based on the type of communication traffic, the hybrid switch improves communication for most types of traffic

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout
    corecore