272 research outputs found

    Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes

    Full text link
    Given positive integers nn and dd, let A2(n,d)A_2(n,d) denote the maximum size of a binary code of length nn and minimum distance dd. The well-known Gilbert-Varshamov bound asserts that A2(n,d)2n/V(n,d1)A_2(n,d) \geq 2^n/V(n,d-1), where V(n,d)=i=0d(ni)V(n,d) = \sum_{i=0}^{d} {n \choose i} is the volume of a Hamming sphere of radius dd. We show that, in fact, there exists a positive constant cc such that A2(n,d)c2nV(n,d1)log2V(n,d1) A_2(n,d) \geq c \frac{2^n}{V(n,d-1)} \log_2 V(n,d-1) whenever d/n0.499d/n \le 0.499. The result follows by recasting the Gilbert- Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.Comment: 10 pages, 3 figures; to appear in the IEEE Transactions on Information Theory, submitted August 12, 2003, revised March 28, 200

    Asymptotic improvement of the Gilbert-Varshamov bound for linear codes

    Full text link
    The Gilbert-Varshamov bound states that the maximum size A_2(n,d) of a binary code of length n and minimum distance d satisfies A_2(n,d) >= 2^n/V(n,d-1) where V(n,d) stands for the volume of a Hamming ball of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound can be improved to A_2(n,d) >= cn2^n/V(n,d-1) for c a constant and d/n <= 0.499. In this paper we show that certain asymptotic families of linear binary [n,n/2] random double circulant codes satisfy the same improved Gilbert-Varshamov bound.Comment: Submitted to IEEE Transactions on Information Theor

    An Upper Bound on the Minimum Distance of LDPC Codes over GF(q)

    Full text link
    In [1] a syndrome counting based upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over GF(q). The comparison to the lower bound for LDPC codes over GF(q) and to the upper bound for non-binary codes is done. The new bound is shown to lie under the Gilbert-Varshamov bound at high rates.Comment: 4 pages, submitted to ISIT 201

    Improving the Gilbert-Varshamov Bound by Graph Spectral Method

    Full text link
    We improve Gilbert-Varshamov bound by graph spectral method. Gilbert graph Gq,n,dG_{q,n,d} is a graph with all vectors in Fqn\mathbb{F}_q^n as vertices where two vertices are adjacent if their Hamming distance is less than dd. In this paper, we calculate the eigenvalues and eigenvectors of Gq,n,dG_{q,n,d} using the properties of Cayley graph. The improved bound is associated with the minimum eigenvalue of the graph. Finally we give an algorithm to calculate the bound and linear codes which satisfy the bound

    Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes

    Full text link
    Locally recoverable (LRC) codes have recently been a focus point of research in coding theory due to their theoretical appeal and applications in distributed storage systems. In an LRC code, any erased symbol of a codeword can be recovered by accessing only a small number of other symbols. For LRC codes over a small alphabet (such as binary), the optimal rate-distance trade-off is unknown. We present several new combinatorial bounds on LRC codes including the locality-aware sphere packing and Plotkin bounds. We also develop an approach to linear programming (LP) bounds on LRC codes. The resulting LP bound gives better estimates in examples than the other upper bounds known in the literature. Further, we provide the tightest known upper bound on the rate of linear LRC codes with a given relative distance, an improvement over the previous best known bounds.Comment: To appear in IEEE Transactions on Information Theor
    corecore