290 research outputs found

    On the class of graphs with strong mixing properties

    Full text link
    We study three mixing properties of a graph: large algebraic connectivity, large Cheeger constant (isoperimetric number) and large spectral gap from 1 for the second largest eigenvalue of the transition probability matrix of the random walk on the graph. We prove equivalence of this properties (in some sense). We give estimates for the probability for a random graph to satisfy these properties. In addition, we present asymptotic formulas for the numbers of Eulerian orientations and Eulerian circuits in an undirected simple graph

    Asymptotic enumeration of Eulerian circuits for graphs with strong mixing properties

    Full text link
    We prove an asymptotic formula for the number of Eulerian circuits for graphs with strong mixing properties and with vertices having even degrees. The exact value is determined up to the multiplicative error O(n−1/2+ε)O(n^{-1/2+\varepsilon}), where nn is the number of vertice

    Asymptotic behavior of the number of Eulerian orientations of graphs

    Full text link
    We consider the class of simple graphs with large algebraic connectivity (the second-smallest eigenvalue of the Laplacian matrix). For this class of graphs we determine the asymptotic behavior of the number of Eulerian orientations. In addition, we establish some new properties of the Laplacian matrix, as well as an estimate of a conditionality of matrices with the asymptotic diagonal predominanceComment: arXiv admin note: text overlap with arXiv:1104.304

    Rates of DNA Sequence Profiles for Practical Values of Read Lengths

    Full text link
    A recent study by one of the authors has demonstrated the importance of profile vectors in DNA-based data storage. We provide exact values and lower bounds on the number of profile vectors for finite values of alphabet size qq, read length ℓ\ell, and word length nn.Consequently, we demonstrate that for q≥2q\ge 2 and n≤qℓ/2−1n\le q^{\ell/2-1}, the number of profile vectors is at least qκnq^{\kappa n} with κ\kappa very close to one.In addition to enumeration results, we provide a set of efficient encoding and decoding algorithms for each of two particular families of profile vectors
    • …
    corecore