44 research outputs found

    On secure NOMA systems with transmit antenna selection schemes

    Get PDF
    This paper investigates the secrecy performance of a two-user downlink non-orthogonal multiple access systems. Both single-input and single-output and multiple-input and single-output systems with different transmit antenna selection (TAS) strategies are considered. Depending on whether the base station has the global channel state information of both the main and wiretap channels, the exact closed-form expressions for the secrecy outage probability (SOP) with suboptimal antenna selection and optimal antenna selection schemes are obtained and compared with the traditional space-time transmission scheme. To obtain further insights, the asymptotic analysis of the SOP in high average channel power gains regime is presented and it is found that the secrecy diversity order for all the TAS schemes with fixed power allocation is zero. Furthermore, an effective power allocation scheme is proposed to obtain the non-zero diversity order with all the TAS schemes. Monte Carlo simulations are performed to verify the proposed analytical results

    Effects of Correlation of Channel Gains on the Secrecy Capacity in the Gaussian Wiretap Channel

    Get PDF
    Secrecy capacity is one of the most important characteristic of a wireless communication channel. Therefore, the study of this characteristic wherein the system has correlated channel gains and study them for different line-of-sight (LOS) propagation scenarios is of ultimate importance. The primary objective of this thesis from the mathematical side is to determine the secrecy capacity (SC) for correlated channel gains for the main and eavesdropper channels in a Gaussian Wiretap channel as a function from main parameters (μ, Σ, ρ). f(h1, h2) is the joint distribution of the two channel gains at channel use (h1, h2), fi(hi) is the main distribution of the channel gain hi. The results are based on assumption of the Gaussian distribution of channel gains (gM, gE). The main task of estimating the secrecy capacity is reduced to the problem of solving linear partial differential equations (PDE). Different aspects of the analysis of secrecy capacity considered in this research are the Estimation of SC mathematically and numerically for correlated SISO systems and a mathematical example for MIMO systems with PDE. The variations in Secrecy Capacity are studied for Rayleigh (NLOS) distribution and Rician (LOS) distribution. Suitable scenarios are identified in which secure communication is possible with correlation of channel gains. Also, the new algorithm using PDE has a higher speed and than analog algorithms constructed on the classical statistical Monte Carlo methods. Taking into account the normality of the distribution of system parameters, namely the channel gain (gM, gE), the algorithm is constructed for systems of partial differential equations which satisfies the secrecy criterion. Advisor: H. Andrew Harm
    corecore