19 research outputs found

    Asymmetric Quantum Dialogue in Noisy Environment

    Full text link
    A notion of asymmetric quantum dialogue (AQD) is introduced. Conventional protocols of quantum dialogue are essentially symmetric as both the users (Alice and Bob) can encode the same amount of classical information. In contrast, the scheme for AQD introduced here provides different amount of communication powers to Alice and Bob. The proposed scheme, offers an architecture, where the entangled state and the encoding scheme to be shared between Alice and Bob depends on the amount of classical information they want to exchange with each other. The general structure for the AQD scheme has been obtained using a group theoretic structure of the operators introduced in (Shukla et al., Phys. Lett. A, 377 (2013) 518). The effect of different types of noises (e.g., amplitude damping and phase damping noise) on the proposed scheme is investigated, and it is shown that the proposed AQD is robust and uses optimized amount of quantum resources.Comment: 11 pages, 2 figure

    Quantum e-commerce: A comparative study of possible protocols for online shopping and other tasks related to e-commerce

    Full text link
    A set of quantum protocols for online shopping is proposed and analyzed to establish that it is possible to perform secure online shopping using different types of quantum resources. Specifically, a single photon based, a Bell state based and two 3-qubit entangled state based quantum online shopping schemes are proposed. The Bell state based scheme, being a completely orthogonal state based protocol, is fundamentally different from the earlier proposed schemes which were based on conjugate coding. One of the 3-qubit entangled state based scheme is build on the principle of entanglement swapping which enables us to accomplish the task without transmission of the message encoded qubits through the channel. Possible ways of generalizing the entangled state based schemes proposed here to the schemes which use multiqubit entangled states is also discussed. Further, all the proposed protocols are shown to be free from the limitations of the recently proposed protocol of Huang et al. (Quantum Inf. Process. 14, 2211-2225, 2015) which allows the buyer (Alice) to change her order at a later time (after initially placing the order and getting it authenticated by the controller). The proposed schemes are also compared with the existing schemes using qubit efficiency.Comment: It's shown that quantum e-commerce is not a difficult task, and it can be done in various way

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Quantum Information Processing with Single Photons

    Full text link
    Photons are natural carriers of quantum information due to their ease of distribution and long lifetime. This thesis concerns various related aspects of quantum information processing with single photons. Firstly, we demonstrate N-photon entanglement generation through a generalised N X N symmetric beam splitter known as the Bell multiport. A wide variety of 4-photon entangled states as well as the N-photon W-state can be generated with an unexpected non-monotonic decreasing probability of success with N. We also show how the same setup can be used to generate multiatom entanglement. A further study of multiports also leads us to a multiparticle generalisation of the Hong-Ou-Mandel dip which holds for all Bell multiports of even number of input ports. Next, we demonstrate a generalised linear optics based photon filter that has a constant success probability regardless of the number of photons involved. This filter has the highest reported success probability and is interferometrically robust. Finally, we demonstrate how repeat-until-success quantum computing can be performed with two distant nodes with unit success probability using only linear optics resource. We further show that using non-identical photon sources, robustness can still be achieved, an illustration of the nature and advantages of measurement-based quantum computation. A direct application to the same setup leads naturally to arbitrary multiphoton state generation on demand. Finally, we demonstrate how polarisation entanglement of photons can be detected from the emission of two atoms in a Young's double-slit type experiment without linear optics, resulting in both atoms being also maximally entangled.Comment: PhD Thesis, 131 page
    corecore