1,168 research outputs found

    Computationally efficient characterization of standard cells for statistical static timing analysis

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 44-45).We propose a computationally efficient statistical static timing analysis (SSTA) technique that addresses intra-die variations at near-threshold to sub-threshold supply voltage, simulated on a scaled 32nm CMOS standard cell library. This technique would characterize the propagation delay and output slew of an individual cell for subsequent timing path analyses. Its efficiency stems from the fact that it only needs to find the delay or output slew in the vicinity of the ?- sigma operating point (where ? = 0 to 3) rather than the entire probability density function of the delay or output slew, as in conventional Monte-Carlo simulations. The algorithm is simulated on combinational logic gates that include inverters, NANDs, and NORs of different sizes. The delay and output slew estimates in most cases differ from the Monte-Carlo results by less than 5%. Higher supply voltage, larger transistor widths, and slower input slews tend to improve delay and output slew estimates. Transistor stacking is found to be the only major source of under-prediction by the SSTA technique. Overall, the cell characterization approach has a substantial computational advantage compared to SPICE-based Monte-Carlo analysis.by Sharon H. Chou.M.Eng

    Low energy digital circuits in advanced nanometer technologies

    Get PDF
    The demand for portable devices and the continuing trend towards the Internet ofThings (IoT) have made of energy consumption one of the main concerns in the industry and researchers. The most efficient way of reducing the energy consump-tion of digital circuits is decreasing the supply voltage (Vdd) since the dynamicenergy quadratically depends onVdd. Several works have shown that an optimumsupply voltage exists that minimizes the energy consumption of digital circuits. This optimum supply voltage is usually around 200 mV and 400 mV dependingon the circuit and technology used. To obtain these low supply voltages, on-chipdc-dc converters with high efficiency are needed.This thesis focuses on the study of subthreshold digital systems in advancednanometer technologies. These systems usually can be divided into a Power Man-agement Unit (PMU) and a digital circuit operating at the subthreshold regime.In particular, while considering the PMU, one of the key circuits is the dc-dcconverter. This block converts the voltage from the power source (battery, supercapacitor or wireless power transfer link) to a voltage between 200 mV and 400mV in order to power the digital circuit. In this thesis, we developed two chargerecycling techniques in order to improve the efficiency of switched capacitors dc-dcconverters. The first one is based on a technique used in adiabatic circuits calledstepwise charging. This technique was used in circuits and applications wherethe switching consumption of a big capacitance is very important. We analyzedthe possibility of using this technique in switched capacitor dc-dc converters withintegrated capacitors. We showed through measurements that a 29% reductionin the gate drive losses can be obtained with this technique. The second one isa simplification of stepwise charging which can be applied in some architecturesof switched capacitors dc-dc converters. We also fabricated and tested a dc-dcconverter with this technique and obtained a 25% energy reduction in the drivingof the switches that implement the converter.Furthermore, we studied the digital circuit working in the subthreshold regime,in particular, operating at the minimum energy point. We studied different modelsfor circuits working in these conditions and improved them by considering thedifferences between the NMOS and PMOS transistors. We obtained an optimumNMOS/PMOS leakage current imbalance that minimizes the total leakage energy per operation. This optimum depends on the architecture of the digital circuitand the input data. However, we also showed that important energy reductionscan be obtained by operating at a mean optimum imbalance. We proposed two techniques to achieve the optimum imbalance. We used aFully Depleted Silicon on Insulator (FD-SOI) 28 nm technology for most of the simulations, but we also show that these techniques can be applied in traditionalbulk CMOS technologies. The first one consists in using the back plane voltage of the transistors (or bulk voltage in traditional CMOS) to adjust independently theleakage current of the NMOS and PMOS transistor to work under the optimum NMOS/PMOS leakage current imbalance. We called this approach the OptimumBack Plane Biasing (OBB). A second technique consists of using the length of the transistors to adjust this leakage current imbalance. In the subthreshold regimeand in advanced nanometer technologies a moderate increase in the length has little impact in the output capacitance of the gates and thus in the dynamic energy.We called this approach an Asymmetric Length Biasing (ALB). Finally, we use these techniques in some basic circuits such as adders. We show that around 50% energy reduction can be obtained, in a wide range of frequency while working near the minimum energy point and using these techniques. The main contributions of this thesis are: • Analysis of the stepwise charging technique in small capacitances. •Implementation of stepwise charging technique as a charge recycling tech-nique for efficiency improvement in switched capacitor dc-dc converters. • Development of a charge sharing technique for efficiency improvement inswitched capacitor dc-dc converters. • Analysis of minimum operating voltage of digital circuits due to intrinsicnoise and the impact of technology scaling in this minimum. • Improvement in the modeling of the minimum energy point while considering NMOS and PMOS transistors difference. • Demonstration of the existence of an optimum leakage current imbalance be-tween the NMOS and PMOS transistors that minimizes energy consumptionin the subthreshold regiion. • Development of a back plane (bulk) voltage strategy for working in this optimum.• Development of a sizing strategy for working in the aforementioned optimum. • Analysis of the impact of architecture and input data on the optimum im-balance. The thesis is based on the publications [1–8]. During the Ph.D. program, other publications were generated [9–16] that are partially related with the thesis butwere not included in it.La constante demanda de dispositivos portables y los avances hacia la Internet de las Cosas han hecho del consumo de energía uno de los mayores desafíos y preocupación en la industria y la academia. La forma más eficiente de reducir el consumo de energía de los circuitos digitales es reduciendo su voltaje de alimentación ya que la energía dinámica depende de manera cuadrática con dicho voltaje. Varios trabajos demostraron que existe un voltaje de alimentación óptimo, que minimiza la energía consumida para realizar cierta operación en un circuito digital, llamado punto de mínima energía. Este óptimo voltaje se encuentra usualmente entre 200 mV y 400 mV dependiendo del circuito y de la tecnología utilizada. Para obtener estos voltajes de alimentación de la fuente de energía, se necesitan conversores dc-dc integrados con alta eficiencia. Esta tesis se concentra en el estudio de sistemas digitales trabajando en la región sub umbral diseñados en tecnologías nanométricas avanzadas (28 nm). Estos sistemas se pueden dividir usualmente en dos bloques, uno llamado bloque de manejo de potencia, y el segundo, el circuito digital operando en la region sub umbral. En particular, en lo que corresponde al bloque de manejo de potencia, el circuito más crítico es en general el conversor dc-dc. Este circuito convierte el voltaje de una batería (o super capacitor o enlace de transferencia inalámbrica de energía o unidad de cosechado de energía) en un voltaje entre 200 mV y 400 mV para alimentar el circuito digital en su voltaje óptimo. En esta tesis desarrollamos dos técnicas que, mediante el reciclado de carga, mejoran la eficiencia de los conversores dc-dc a capacitores conmutados. La primera es basada en una técnica utilizada en circuitos adiabáticos que se llama carga gradual o a pasos. Esta técnica se ha utilizado en circuitos y aplicaciones en donde el consumo por la carga y descarga de una capacidad grande es dominante. Nosotros analizamos la posibilidad de utilizar esta técnica en conversores dc-dc a capacitores conmutados con capacitores integrados. Se demostró a través de medidas que se puede reducir en un 29% el consumo debido al encendido y apagado de las llaves que implementan el conversor dc-dc. La segunda técnica, es una simplificación de la primera, la cual puede ser aplicada en ciertas arquitecturas de conversores dc-dc a capacitores conmutados. También se fabricó y midió un conversor con esta técnica y se obtuvo una reducción del 25% en la energía consumida por el manejo de las llaves del conversor. Por otro lado, estudiamos los circuitos digitales operando en la región sub umbral y en particular cerca del punto de mínima energía. Estudiamos diferentes modelos para circuitos operando en estas condiciones y los mejoramos considerando las diferencias entre los transistores NMOS y PMOS. Mediante este modelo demostramos que existe un óptimo en la relación entre las corrientes de fuga de ambos transistores que minimiza la energía de fuga consumida por operación. Este óptimo depende de la arquitectura del circuito digital y ademas de los datos de entrada del circuito. Sin embargo, demostramos que se puede reducir el consumo de manera considerable al operar en un óptimo promedio. Propusimos dos técnicas para alcanzar la relación óptima. Utilizamos una tecnología FD-SOI de 28nm para la mayoría de las simulaciones, pero también mostramos que estas técnicas pueden ser utilizadas en tecnologías bulk convencionales. La primer técnica, consiste en utilizar el voltaje de la puerta trasera (o sustrato en CMOS convencional) para ajustar de manera independiente las corrientes del NMOS y PMOS para que el circuito trabaje en el óptimo de la relación de corrientes. Esta técnica la llamamos polarización de voltaje de puerta trasera óptimo. La segunda técnica, consiste en utilizar los largos de los transistores para ajustar las corrientes de fugas de cada transistor y obtener la relación óptima. Trabajando en la región sub umbral y en tecnologías avanzadas, incrementar moderadamente el largo del transistor tiene poco impacto en la energía dinámica y es por eso que se puede utilizar. Finalmente, utilizamos estas técnicas en circuitos básicos como sumadores y mostramos que se puede obtener una reducción de la energía consumida de aproximadamente 50%, en un amplio rango de frecuencias, mientras estos circuitos trabajan cerca del punto de energía mínima. Las principales contribuciones de la tesis son: • Análisis de la técnica de carga gradual o a pasos en capacidades pequeñas. • Implementación de la técnica de carga gradual para la mejora de eficiencia de conversores dc-dc a capacitores conmutados. • Simplificación de la técnica de carga gradual para mejora de la eficiencia en algunas arquitecturas de conversores dc-dc de capacitores conmutados. • Análisis del mínimo voltaje de operación en circuitos digitales debido al ruido intrínseco del dispositivo y el impacto del escalado de las tecnologías en el mismo. • Mejoras en el modelado del punto de energía mínima de operación de un circuito digital en el cual se consideran las diferencias entre el transistor PMOS y NMOS. • Demostración de la existencia de un óptimo en la relación entre las corrientes de fuga entre el NMOS y PMOS que minimiza la energía de fugas consumida en la región sub umbral. • Desarrollo de una estrategia de polarización del voltaje de puerta trasera para que el circuito digital trabaje en el óptimo antes mencionado. • Desarrollo de una estrategia para el dimensionado de los transistores que componen las compuertas digitales que permite al circuito digital operar en el óptimo antes mencionado. • Análisis del impacto de la arquitectura del circuito y de los datos de entrada del mismo en el óptimo antes mencionado

    차세대 자동차용 카메라 데이터 통신을 위한 비대칭 동시 양방향 송수신기의 설계

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022.2. 정덕균.본 학위 논문에서는 차세대 자동차용 카메라 링크를 위해 높은 속도의 4레벨 펄스 진폭 변조 신호와 낮은 속도의 2레벨 펄스 진폭 변조 신호를 통신하는 비대칭 동시 양방향 송수신기의 설계 기술에 대해 제안하고 검증되었다. 첫번째 프로토타입 설계에서는, 10B6Q 직류 밸런스 코드를 탑재한 4레벨 펄스 진폭 변조 송신기와 고정된 데이터와 참조 레벨을 가지는 4레벨 펄스 진폭 변조 적응형 수신기에 대한 내용이 기술되었다. 4레벨 펄스 진폭 변조 송신기에서는 교류 연결 링크 시스템에 대응하기 위한 면적 및 전력 효율성이 좋은 10B6Q 코드가 제안되었다. 이 코드는 직류 밸런스를 맞추고 연속적으로 같은 심볼을 가지는 길이를 6개로 제한 시킨다. 비록 여기서는 입력 데이터 길이 10비트를 사용하였지만, 제안된 기술은 카메라의 다양한 데이터 타입에 대응할 수 있도록 입력 데이터 길이에 대한 확장성을 가진다. 반면, 4레벨 펄스 진폭 변조 적응형 수신기에서는, 샘플러의 옵셋을 최적으로 제거하여 더 낮은 비트에러율을 얻기 위해서, 기존의 데이터 및 참조 레벨을 조절하는 대신, 이 레벨들은 고정시키고 가변 게인 증폭기를 적응형으로 조절하도록 하였다. 상기 10B6Q 코드 및 고정 데이터 및 참조레벨 기술을 가진 프로토타입 칩들은 40 나노미터 상호보완형 메탈 산화 반도체 공정으로 제작되었고 칩 온 보드 형태로 평가되었다. 10B6Q 코드는 합성 게이트 숫자는 645개와 함께 단 0.0009 mm2 의 면적 만을 차지한다. 또한, 667 MHz 동작 주파수에서 단 0.23 mW 의 전력을 소모한다. 10B6Q 코드를 탑재한 송신기에서 8-Gb/s 4레벨 펄스 진폭 변조 신호를 고정 데이터 및 참조 레벨을 가지는 적응형 수신기로 12-m 케이블 (22-dB 채널 로스) 을 통해서 보낸 결과 최소 비트 에러율 108 을 달성하였고, 비트 에러율 105 에서는 아이 마진이 0.15 UI x 50 mV 보다 크게 측정되었다. 송수신기를 합친 전력 소모는 65.2 mW (PLL 제외) 이고, 성과의 대표수치는 0.37 pJ/b/dB 를 보여주었다. 첫번째 프로토타입 설계을 포함하여 개선된 두번째 프로토타입 설계에서는, 12-Gb/s 4레벨 펄스 진폭 변조 정방향 채널 신호와 125-Mb/s 2레벨 펄스 진폭 변조 역방향 채널 신호를 탑재한 비대칭 동시 양방향 송수신기에 대해 기술되고 검증되었다. 제안된 넓은 선형 범위를 가지는 하이브리드는 gmC 저대역 통과 필터와 에코 제거기와 함께 아웃바운드 신호를 24 dB 이상 효율적으로 감소시켰다. 또한, 넓은 선형 범위를 가지는 하이브리드와 함께 게인 감소기를 형성하게 되는 선형 범위 증폭기를 통해 4레벨 펄스 진폭 변조 신호의 선형성과 진폭의 트레이드 오프 관계를 깨는 것이 가능하였다. 동시 양방향 송수신기 칩은 40 나노미터 상호보완형 메탈 산화 반도체 공정으로 제작되었다. 상기 설계 기술들을 이용하여, 4레벨 펄스 진폭 변조 및 2레벨 펄스 진폭 변조 송수신기 모두 5m 채널 (채널 로스 15.9 dB) 에서 1E-12 보다 낮은 비트 에러율을 달성하였고, 총 78.4 mW 의 전력 소모를 기록하였다. 종합적인 송수신기는 성과 대표지표로 0.41 pJ/b/dB 와 함께 동시 양방향 통신 아래에서 4레벨 펄스 진폭 변조 신호 및 2레벨 펄스 진폭 변조 신호 각각에서 아이 마진 0.15 UI 와 0.57 UI 를 달성하였다. 이 수치는 성과 대표지표 0.5 이하를 가지는 기존 동시 양방향 송수신기와의 비교에서 최고의 아이 마진을 기록하였다.In this dissertation, design techniques of a highly asymmetric simultaneous bidirectional (SB) transceivers with high-speed PAM-4 and low-speed PAM-2 signals are proposed and demonstrated for the next-generation automotive camera link. In a first prototype design, a PAM-4 transmitter with 10B6Q DC balance code and a PAM-4 adaptive receiver with fixed data and threshold levels (dtLevs) are presented. In PAM-4 transmitter, an area- and power-efficient 10B6Q code for an AC coupled link system that guarantees DC balance and limited run length of six is proposed. Although the input data width of 10 bits is used here, the proposed scheme has an extensibility for the input data width to cover various data types of the camera. On the other hand, in the PAM-4 adaptive receiver, to optimally cancel the sampler offset for a lower BER, instead of adjusting dtLevs, the gain of a programmable gain amplifier is adjusted adaptively under fixed dtLevs. The prototype chips including above proposed 10B6Q code and fixed dtLevs are fabricated in 40-nm CMOS technology and tested in chip-on-board assembly. The 10B6Q code only occupies an active area of 0.0009 mm2 with a synthesized gate count of 645. It also consumes 0.23 mW at the operating clock frequency of 667 MHz. The transmitter with 10B6Q code delivers 8-Gb/s PAM-4 signal to the adaptive receiver using fixed dtLevs through a lossy 12-m cable (22-dB channel loss) with a BER of 1E-8, and the eye margin larger than 0.15 UI x 50 mV is measured for a BER of 1E-5. The proto-type chips consume 65.2 mW (excluding PLL), exhibiting an FoM of 0.37 pJ/b/dB. In a second prototype design advanced from the first prototypes, An asymmetric SB transceivers incorporating a 12-Gb/s PAM-4 forward channel and a 125-Mb/s PAM-2 back channel are presented and demonstrated. The proposed wide linear range (WLR) hybrid combined with a gmC low-pass filter and an echo canceller effectively suppresses the outbound signals by more than 24dB. In addition, linear range enhancer which forms a gain attenuator with WLR hybrid breaks the trade-off between the linearity and the amplitude of the PAM-4 signal. The SB transceiver chips are separately fabricated in 40-nm CMOS technology. Using above design techniques, both PAM-4 and PAM-2 SB transceivers achieve BER less than 1E-12 over a 5-m channel (15.9 dB channel loss), consuming 78.4 mW. The overall transceivers achieve an FoM of 0.41 pJ/b/dB and eye margin (at BER of 1E-12) of 0.15 UI and 0.57 UI for the forward PAM-4 and back PAM-2 signals, respectively, under SB communication. This is the best eye margin compared to the prior art SB transceivers with an FoM less than 0.5.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 DISSERTATION ORGANIZATION 4 CHAPTER 2 BACKGROUND ON AUTOMOTIVE CAMERA LINK 6 2.1 OVERVIEW 6 2.2 SYSTEM REQUIREMENTS 10 2.2.1 CHANNEL 10 2.2.2 POWER OVER DIFFERENTIAL LINE (PODL) 12 2.2.3 AC COUPLING AND DC BALANCE CODE 15 2.2.4 SIMULTANEOUS BIDIRECTIONAL COMMUNICATION 18 2.2.4.1 HYBRID 18 2.2.4.2 ECHO CANCELLER 20 2.2.5 ADAPTIVE RECEIVE EQUALIZATION 22 CHAPTER 3 AREA AND POWER EFFICIENT 10B6Q ENCODER FOR DC BALANCE 25 3.1 INTRODUCTION 25 3.2 PRIOR WORKS 28 3.3 PROPOSED AREA- AND POWER-EFFICIENT 10B6Q PAM-4 CODER 30 3.4 DESIGN OF THE 10B6Q CODE 33 3.4.1 PAM-4 DC BALANCE 35 3.4.2 PAM-4 TRANSITION DENSITY 35 3.4.3 10B6Q DECODER 37 3.5 IMPLEMENTATION AND MEASUREMENT RESULTS 40 CHAPTER 4 PAM-4 TRANSMITTER AND ADAPTIVE RECEIVER WITH FIXED DATA AND THRESHOLD LEVELS 45 4.1 INTRODUCTION 45 4.2 PRIOR WORKS 47 4.3 ARCHITECTURE AND IMPLEMENTATION 49 4.2.1 PAM-4 TRANSMITTER 49 4.2.2 PAM-4 ADAPTIVE RECEIVER 52 4.3 MEASUREMENT RESULTS 62 CHAPTER 5 ASYMMETRIC SIMULTANEOUS BIDIRECTIONAL TRANSCEIVERS USING WIDE LINEAR RANGE HYBRID 68 5.1 INTRODUCTION 68 5.2 PRIOR WORKS 70 5.3 WIDE LINEAR RANGE (WLR) HYBRID 75 5.3 IMPLEMENTATION 78 5.3.1 SERIALIZER (SER) DESIGN 78 5.3.2 DESERIALIZER (DES) DESIGN 79 5.4 HALF CIRCUIT ANALYSIS OF WLR HYBRID AND LRE 82 5.5 MEASUREMENT RESULTS 88 CHAPTER 6 CONCLUSION 97 BIBLIOGRAPHY 99 초 록 106박

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Process-induced Structural Variability-aware Performance Optimization for Advanced Nanoscale Technologies

    Get PDF
    Department of Electrical EngineeringAs the CMOS technologies reach the nanometer regime through aggressive scaling, integrated circuits (ICs) encounter scaling impediments such as short channel effects (SCE) caused by reduced ability of gate control on the channel and line-edge roughness (LER) caused by limits of the photolithography technologies, leading to serious device parameter fluctuations and makes the circuit analysis difficult. In order to overcome scaling issues, multi-gate structures are introduced from the planar MOSFET to increase the gate controllability. The goal of this dissertation is to analyze structural variations induced by manufacturing process in advanced nanoscale devices and to optimize its impacts in terms of the circuit performances. If the structural variability occurs, aside from the endeavor to reduce the variability, the impact must be taken into account at the design level. Current compact model does not have device structural variation model and cannot capture the impact on the performance/power of the circuit. In this research, the impacts of structural variation in advanced nanoscale technology on the circuit level parameters are evaluated and utilized to find the optimal device shape and structure through technology computer-aided-design (TCAD) simulations. The detail description of this dissertation is as follows: Structural variation for nanoscale CMOS devices is investigated to extend the analysis approach to multi-gate devices. Simple and accurate modeling that analyzes non-rectilinear gate (NRG) CMOS transistors with a simplified trapezoidal approximation method is proposed. The electrical characteristics of the NRG gate, caused by LER, are approximated by a trapezoidal shape. The approximation is acquired by the length of the longest slice, the length of the smallest slice, and the weighting factor, instead of taking the summation of all the slices into account. The accuracy can even be improved by adopting the width-location-dependent factor (Weff). The positive effect of diffusion rounding at the transistor source side of CMOS is then discussed. The proposed simple layout method provides boosting the driving strength of logic gates and also saving the leakage power with a minimal area overhead. The method provides up to 13% speed up and also saves up to 10% leakage current in an inverter simulation by exploiting the diffusion rounding phenomena in the transistors. The performance impacts of the trapezoidal fin shape of a double-gate FinFET are then discussed. The impacts are analyzed with TCAD simulations and optimal trapezoidal angle range is proposed. Several performance metrics are evaluated to investigate the impact of the trapezoidal fin shape on the circuit operation. The simulations show that the driving capability improves, and the gate capacitance increases as the bottom fin width of the trapezoidal fin increases. The fan-out 4 (FO4) inverter and ring-oscillator (RO) delay results indicate that careful optimization of the trapezoidal angle can increase the speed of the circuit because the ratios of the current and capacitance have different impacts depending on the trapezoidal angle. Last but not least, the electrical characteristics of a double-gate-all-around (DGAA) transistor with an asymmetric channel width using device simulations are also investigated in this work. The DGAA FET, a kind of nanotube field-effect transistor (NTFET), can solve the problem of loss of gate controllability of the channel and provide improved short-channel behavior. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, this work proposes the n/p DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional GAA inverter structure. In the optimum structure, 27% propagation delay and 15% leakage power improvement can be achieved. Analysis and optimization for device-level variability are critical in integrated circuit designs of advanced technology nodes. Thus, the proposed methods in this dissertation will be helpful for understanding the relationship between device variability and circuit performance. The research for advanced nanoscale technologies through intensive TCAD simulations, such as FinFET and GAA, suggests the optimal device shape and structure. The results provide a possible solution to design high performance and low power circuits with minimal design overhead.ope

    Case Studies on Variation Tolerant and Low Power Design Using Planar Asymmetric Double Gate Transistor

    Get PDF
    In nanometer technologies, process variation control and low power have emerged as the first order design goal after high performance. Process variations cause high variability in performance and power consumption of an IC, which affects the overall yield. Short channel effects (SCEs) deteriorate the MOSFET performance and lead to higher leakage power. Double gate devices suppress SCEs and are potential candidates for replacing Bulk technology in nanometer nodes. Threshold voltage control in planar asymmetric double gate transistor (IGFET) using a fourth terminal provides an effective means of combating process variations and low power design. In this thesis, using various case studies, we analyzed the suitability of IGFET for variation control and low power design. We also performed an extensive comparison between IGFET and Bulk for reducing variability, improving yield and leakage power reduction using power gating. We also proposed a new circuit topology for IGFET, which on average shows 33.8 percent lower leakage and 34.9 percent lower area at the cost of 2.8 percent increase in total active mode power, for basic logic gates. Finally, we showed a technique for reducing leakage of minimum sized devices designed using new circuit topology for IGFET

    An 8-Bit Analog-to-Digital Converter for Battery Operated Wireless Sensor Nodes

    Get PDF
    Wireless sensing networks (WSNs) collect analog information transduced into the form of a voltage or current. This data is typically converted into a digital representation of the value and transmitted wirelessly using various modulation techniques. As the available power and size is limited for wireless sensor nodes in many applications, a medium resolution Analog-to-Digital Converter (ADC) is proposed to convert a sensed voltage with moderate speeds to lower power consumption. Specifications also include a rail-to-rail input range and minimized errors associated with offset, gain, differential nonlinearity, and integral nonlinearity. To achieve these specifications, an 8-bit successive approximation register ADC is developed which has a conversion time of nine clock cycles. This ADC features a charge scaling array included to achieve minimized power consumption and area by reducing unit capacitance in the digital-to-analog converter. Furthermore, a latched comparator provides fast decisions utilizing positive feedback. The ADC was designed and simulated using Cadence Virtuoso with parasitic extraction over expected operating temperature range of 0 – 85°C. The design was fabricated using TSMC’s 65 nanometer RF GP process and tested on a printed circuit board to verify design specifications. The measured results for the device show an offset and gain error of +7 LSB and 31.1 LSB, respectively, and a DNL range of -0.9 LSB to +0.8 LSB and an INL range of approximately -4.6 LSB to +12 LSB. The INL is much improved in regard to the application of the temperature sensor. The INL for this region of interest is from -3.5 LSB to +2.8 LSB

    Solid-state imaging : a critique of the CMOS sensor

    Get PDF
    corecore