359,029 research outputs found
Laboratory Astrophysics and the State of Astronomy and Astrophysics
Laboratory astrophysics and complementary theoretical calculations are the
foundations of astronomy and astrophysics and will remain so into the
foreseeable future. The impact of laboratory astrophysics ranges from the
scientific conception stage for ground-based, airborne, and space-based
observatories, all the way through to the scientific return of these projects
and missions. It is our understanding of the under-lying physical processes and
the measurements of critical physical parameters that allows us to address
fundamental questions in astronomy and astrophysics. In this regard, laboratory
astrophysics is much like detector and instrument development at NASA, NSF, and
DOE. These efforts are necessary for the success of astronomical research being
funded by the agencies. Without concomitant efforts in all three directions
(observational facilities, detector/instrument development, and laboratory
astrophysics) the future progress of astronomy and astrophysics is imperiled.
In addition, new developments in experimental technologies have allowed
laboratory studies to take on a new role as some questions which previously
could only be studied theoretically can now be addressed directly in the lab.
With this in mind we, the members of the AAS Working Group on Laboratory
Astrophysics, have prepared this State of the Profession Position Paper on the
laboratory astrophysics infrastructure needed to ensure the advancement of
astronomy and astrophysics in the next decade.Comment: Position paper submitted by the AAS Working Group on Laboratory
Astrophysics (WGLA) to the State of the Profession (Facilities, Funding and
Programs Study Group) of the Astronomy and Astrophysics Decadal Survey
(Astro2010
The VLT-FLAMES survey of massive stars: Wind properties and evolution of hot massive stars in the LMC
[Abridged] We have studied the optical spectra of 28 O- and early B-type
stars in the Large Magellanic Cloud, 22 of which are associated with the young
star-forming region N11. Stellar parameters are determined using an automated
fitting method, combining the stellar atmosphere code FASTWIND with the
genetic-algorithm optimisation routine PIKAIA. Results for stars in the LH9 and
LH10 associations of N11 are consistent with a sequential star formation
scenario, in which activity in LH9 triggered the formation of LH10. Our sample
contains four stars of spectral type O2, of which the hottest is found to be
~49-54 kK (cf. ~45-46 kK for O3 stars). The masses of helium-enriched dwarfs
and giants are systematically lower than those implied by non-rotating
evolutionary tracks. We interpret this as evidence for efficient
rotationally-enhanced mixing, leading to the surfacing of primary helium and to
an increase of the stellar luminosity. This result is consistent with findings
for SMC stars by Mokiem et al. For bright giants and supergiants no such
mass-discrepancy is found, implying that these stars follow tracks of modestly
(or non-)rotating objects. Stellar mass-loss properties were found to be
intermediate to those found in massive stars in the Galaxy and the SMC, and
comparisons with theoretical predictions at LMC metallicity yielded good
agreement over the luminosity range of our targets, i.e. 5.0 < log L/L(sun) <
6.1
Astrophysics
Historical account of astrophysics development based on photometry and spectroscop
X-ray Sources and their Optical Counterparts in the Globular Cluster M4
We report on the Chandra X-ray Observatory ACIS-S3 imaging observation of the
Galactic globular cluster M4 (NGC 6121). We detect 12 X-ray sources inside the
core and 19 more within the cluster half-mass radius. The limiting luminosity
of this observation is Lx~10e29 erg/sec for sources associated with the
cluster, the deepest X-ray observation of a globular cluster to date. We
identify 6 X-ray sources with known objects and use ROSAT observations to show
that the brightest X-ray source is variable. Archival data from the Hubble
Space Telescope allow us to identify optical counterparts to 16 X-ray sources.
Based on the X-ray and optical properties of the identifications and the
information from the literature, we classify two (possibly three) sources as
cataclysmic variables, one X-ray source as a millisecond pulsar and 12 sources
as chromospherically active binaries. Comparison of M4 with 47 Tuc and NGC 6397
suggests a scaling of the number of active binaries in these clusters with the
cluster (core) mass.Comment: 11 pages, 6 figures, accepted for publication in ApJ. Figure 1 and 5
are of reduced qualit
Nuclear Astrophysics
Nuclear astrophysics is that branch of astrophysics which helps understanding
some of the many facets of the Universe through the knowledge of the microcosm
of the atomic nucleus. In the last decades much advance has been made in
nuclear astrophysics thanks to the sometimes spectacular progress in the
modelling of the structure and evolution of the stars, in the quality and
diversity of the astronomical observations, as well as in the experimental and
theoretical understanding of the atomic nucleus and of its spontaneous or
induced transformations. Developments in other sub-fields of physics and
chemistry have also contributed to that advance. Many long-standing problems
remain to be solved, however, and the theoretical understanding of a large
variety of observational facts needs to be put on safer grounds. In addition,
new questions are continuously emerging, and new facts endanger old ideas. This
review shows that astrophysics has been, and still is, highly demanding to
nuclear physics in both its experimental and theoretical components. On top of
the fact that large varieties of nuclei have to be dealt with, these nuclei are
immersed in highly unusual environments which may have a significant impact on
their static properties, the diversity of their transmutation modes, and on the
probabilities of these modes. In order to have a chance of solving some of the
problems nuclear astrophysics is facing, the astrophysicists and nuclear
physicists are obviously bound to put their competence in common, and have
sometimes to benefit from the help of other fields of physics, like particle
physics, plasma physics or solid-state physics.Comment: LaTeX2e with iopart.cls, 84 pages, 19 figures (graphicx package), 374
updated references. Published in Reports on Progress in Physics, vol.62, pp.
395-464 (1999
Toward detailed prominence seismology - II. Charting the continuous magnetohydrodynamic spectrum
Starting from accurate MHD flux rope equilibria containing prominence
condensations, we initiate a systematic survey of their linear
eigenoscillations. To quantify the full spectrum of linear MHD eigenmodes, we
require knowledge of all flux-surface localized modes, charting out the
continuous parts of the MHD spectrum. We combine analytical and numerical
findings for the continuous spectrum for realistic prominence configurations.
The equations governing all eigenmodes for translationally symmetric,
gravitating equilibria containing an axial shear flow, are analyzed, along with
their flux-surface localized limit. The analysis is valid for general 2.5D
equilibria, where either density, entropy, or temperature vary from one flux
surface to another. We analyze the mode couplings caused by the poloidal
variation in the flux rope equilibria, by performing a small gravity parameter
expansion. We contrast the analytical results with continuous spectra obtained
numerically. For equilibria where the density is a flux function, we show that
continuum modes can be overstable, and we present the stability criterion for
these convective continuum instabilities. Furthermore, for all equilibria, a
four-mode coupling scheme between an Alfvenic mode of poloidal mode number m
and three neighboring (m-1, m, m+1) slow modes is identified, occurring in the
vicinity of rational flux surfaces. For realistically prominence equilibria,
this coupling is shown to play an important role, from weak to stronger gravity
parameter g values. The analytic predictions for small g are compared with
numerical spectra, and progressive deviations for larger g are identified. The
unstable continuum modes could be relevant for short-lived prominence
configurations. The gaps created by poloidal mode coupling in the continuous
spectrum need further analysis, as they form preferred frequency ranges for
global eigenoscillations.Comment: Accepted by Astronmy & Astrophysics, 21 pages, 15 figure
Cosmological and astrophysical aspects of finite-density QCD
The different phases of QCD at finite temperature and density lead to
interesting effects in cosmology and astrophysics. In this work I review some
aspects of the cosmological QCD transition and of astrophysics at high baryon
density.Comment: 13 pages, 4 figures. Invited talk at 'QCD at Finite Baryon Density',
Bielefeld (Germany), April 199
- …
