2 research outputs found

    MONET: The Minor Body Generator Tool at DART Lab

    Get PDF
    Minor bodies exhibit considerable variability in shape and surface morphology, posing challenges for spacecraft operations, which are further compounded by highly non-linear dynamics and limited communication windows with Earth. Additionally, uncertainties persist in the shape and surface morphology of minor bodies due to errors in ground-based estimation techniques. The growing need for autonomy underscores the importance of robust image processing and visual-based navigation methods. To address this demand, it is essential to conduct tests on a variety of body shapes and with different surface morphological features. This work introduces the procedural Minor bOdy geNErator Tool (MONET), implemented using an open-source 3D computer graphics software. The starting point of MONET is the three-dimensional mesh of a generic minor body, which is procedurally modified by introducing craters, boulders, and surface roughness, resulting in a photorealistic model. MONET offers the flexibility to generate a diverse range of shapes and surface morphological features, aiding in the recreation of various minor bodies. Users can fine-tune relevant parameters to create the desired conditions based on the specific application requirements. The tool offers the capability to generate two default families of models: rubble-pile, characterized by numerous different-sized boulders, and comet-like, reflecting the typical morphology of comets. MONET serves as a valuable resource for researchers and engineers involved in minor body exploration missions and related projects, providing insights into the adaptability and effectiveness of guidance and navigation techniques across a wide range of morphological scenarios

    Intelligent Generation of Graphical Game Assets: A Conceptual Framework and Systematic Review of the State of the Art

    Full text link
    Procedural content generation (PCG) can be applied to a wide variety of tasks in games, from narratives, levels and sounds, to trees and weapons. A large amount of game content is comprised of graphical assets, such as clouds, buildings or vegetation, that do not require gameplay function considerations. There is also a breadth of literature examining the procedural generation of such elements for purposes outside of games. The body of research, focused on specific methods for generating specific assets, provides a narrow view of the available possibilities. Hence, it is difficult to have a clear picture of all approaches and possibilities, with no guide for interested parties to discover possible methods and approaches for their needs, and no facility to guide them through each technique or approach to map out the process of using them. Therefore, a systematic literature review has been conducted, yielding 200 accepted papers. This paper explores state-of-the-art approaches to graphical asset generation, examining research from a wide range of applications, inside and outside of games. Informed by the literature, a conceptual framework has been derived to address the aforementioned gaps
    corecore