93,652 research outputs found
Recommended from our members
High-Flow Vascular Malformations in Children.
Children can have a variety of intracranial vascular anomalies ranging from small and incidental with no clinical consequences to complex lesions that can cause substantial neurologic deficits, heart failure, or profoundly affect development. In contrast to high-flow lesions with direct arterial-to-venous shunts, low-flow lesions such as cavernous malformations are associated with a lower likelihood of substantial hemorrhage, and a more benign course. Management of vascular anomalies in children has to incorporate an understanding of how treatment strategies may affect the normal development of the central nervous system. In this review, we discuss the etiologies, epidemiology, natural history, and genetic risk factors of three high-flow vascular malformations seen in children: brain arteriovenous malformations, intracranial dural arteriovenous fistulas, and vein of Galen malformations
Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.
<div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div
Intrahepatic persistent fetal right umbilical vein: a retrospective study
Introduction: To appraise the incidence and value of intrahepatic persistent right umbilical vein (PRUV). Methods: This was a single-center study. Records of all women with a prenatal diagnosis of intrahepatic PRUV were reviewed. The inclusion criteria were women with gestational age greater than 13 weeks of gestation. Exclusion criteria were fetuses with situs abnormalities, due to the hepatic venous ambiguity, and extrahepatic PRUV. The primary outcome was the incidence of intrahepatic PRUV in our cohort. The secondary outcomes were associated malformations. Results: 219/57,079 cases (0.38%) of intrahepatic PRUV were recorded. The mean gestational age at diagnosis was 21.8 ± 2.9 weeks of gestations. PRUV was isolated in the 76.7%, while in 23.3% was associated with other major or minor abnormalities. The most common associated abnormalities were cardiovascular abnormalities (8.7%), followed by genitourinary abnormalities (6.4%), skeletal abnormalities (4.6%), and central nervous system abnormalities (4.1%). Within the cardiovascular abnormalities, the most common one was ventricular septal defect (six cases). Conclusion: In most cases PRUV is an isolated finding. Associated minor or major malformations are presented in the 23.3% of the cases, so this finding should prompt detailed prenatal assessment of the fetus, with particular regard to cardiovascular system
Cerebral arteriovenous malformations : usability of Spetzler-Martin and Spetzler-Ponce scales in qualification to endovascular embolisation and neurosurgical procedure
Purpose: Arteriovenous malformations (AVMs) are connected with cerebral haemorrhage, seizures, increased intracranial pressure, headaches, mass effect, and ischaemia symptoms. Selection of the best treatment method or even deciding if intervention is required can be difficult. Material and methods: The study included 50 patients who were diagnosed with cerebral AVMs and treated in our Centre between 2008 and 2014. A total of 111 procedures were performed, including 94 endovascular embolisations and 17 neurosurgical procedures. Medical records and imaging data were reviewed for all patients. All AVMs were measured and assessed, allowing classification in Spetzler-Martin and Spetzler-Ponce scales. Results: Complete or partial treatment was observed in 88.24% of neurosurgical procedures and in 84.00% of embolisations. Early complication rate was 21.28% for embolisation and 17.65% for neurosurgical procedures, while Glasgow Outcome Scale was 4.89 (σ = 0.38) and 5.0 (σ = 0.00), respectively. According to the Spetzler-Martin scale, cerebral haemorrhages occurred more frequently in grade 1, but no statistical significance was observed. In Spetzler- Ponce class B lower grades in Glasgow Coma Scale (GCS) were noticed (p = 0.02). Lower GCS scores were also correlated with deep location of AVM and with eloquence of adjacent brain. Patients with Spetzler-Martin grade 1 were more frequently qualified for neurosurgical procedures than other patients. Conclusions: Treating AVMs requires coordination of a multidisciplinary team. Both endovascular embolisation and neurosurgical procedure should be considered as a part of multimodal, frequently multistage treatment. Spetzler-Martin and Spetzler-Ponce scales have an influence on haemorrhage frequency and patients’ clinical condition and should be taken into consideration in selecting the treatment method
Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations.
PurposeThe phenotypic manifestations of cerebral cavernous malformation disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase-mediated hyperpermeability, a potential therapeutic target, has not been established.MethodsWe analyzed PDCD10 small interfering RNA-treated endothelial cells for stress fibers, Rho kinase activity, and permeability. Rho kinase activity was assessed in cerebral cavernous malformation lesions. Brain permeability and cerebral cavernous malformation lesion burden were quantified, and clinical manifestations were assessed in prospectively enrolled subjects with PDCD10 mutations.ResultsWe determined that PDCD10 protein suppresses endothelial stress fibers, Rho kinase activity, and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrated robust Rho kinase activity in murine and human cerebral cavernous malformation vasculature and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared with the more common KRIT1 and CCM2 familial and sporadic cerebral cavernous malformation, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features, including scoliosis, cognitive disability, and skin lesions, unrelated to lesion burden or bleeding.ConclusionThese findings define a unique cerebral cavernous malformation disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling, and the design of trials.Genet Med 17 3, 188-196
Role of fetal MRI in the evaluation of isolated and non-isolated corpus callosum dysgenesis: results of a cross-sectional study
PURPOSE:
The aims of this study were to characterize isolated and non-isolated forms of corpus callosum dysgenesis (CCD) at fetal magnetic resonance imaging (MRI) and to identify early predictors of associated anomalies.
METHODS:
We retrospectively analyzed 104 fetuses with CCD undergoing MRI between 2006 and 2016. Corpus callosum, cavum septi pellucidi, biometry, presence of ventriculomegaly, gyration anomalies, cranio-encephalic abnormalities and body malformations were evaluated. Results of genetic tests were also recorded.
RESULTS:
At MRI, isolated CCD was 26.9%, the rest being associated to other abnormalities. In the isolated group, median gestational age at MRI was lower in complete agenesis than in hypoplasia (22 vs 28 weeks). In the group with additional findings, cortical dysplasia was the most frequently associated feature (P = 0.008), with a more frequent occurrence in complete agenesis (70%) versus other forms; mesial frontal lobes were more often involved than other cortical regions (P = 0.006), with polymicrogyria as the most frequent cortical malformation (40%). Multivariate analysis confirmed the association between complete agenesis and cortical dysplasia (odds ratio = 7.29, 95% confidence interval 1.51-35.21).
CONCLUSIONS:
CCD is often complicated by other intra-cranial and extra-cranial findings (cortical dysplasias as the most prevalent) that significantly affect the postnatal prognosis. The present study showed CCD with associated anomalies as more frequent than isolated (73.1%). In isolated forms, severe ventriculomegaly was a reliable herald of future appearance of associated features
Familial multiple cavernous malformation syndrome : MR features in this uncommon but silent threat
Cerebral cavernous malformations (CCM) are vascular malformations in the brain and spinal cord. The familial form of cerebral cavernous malformation (FCCM) is uncommon. This autosomal dominant pathology mostly presents with seizures and focal neurological symptoms. Many persons affected by FCCM remain asymptomatic. However, acute hemorrhages may appear over time.
MRI demonstrates multiple focal regions of susceptibility induced signal loss, well seen on gradient-echo sequences (GRE) or even better on susceptibility-weighted imaging (SWI). The presence of a single CCM – especially in young persons – without history of FCCM does not exclude this diagnosis.
Some clinicians also advise an MRI of the spinal cord at the time of diagnosis to serve as a baseline and a control MRI of the brain every one to two years. MRI is certainly indicated in individuals with obvious new neurologic symptoms.
Symptomatic siblings should also undergo an MRI of the brain to determine presence, size, and location of the lesions. Even in asymptomatic siblings, a screening MRI may be considered, as there may be an increased risk of hemorrhage, spontaneous or due to the use of certain medications; the knowledge of the presence and the type of these lesions are important.
Surgical removal of a CCM may be justified to prevent a life-threatening hemorrhage. Control MRI may reveal the postoperative outcome
A developmental and genetic classification for malformations of cortical development: update 2012.
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development
Arterial dysgenesis and limb defects : Clinical and experimental examples
Acknowledgements This article is dedicated to Dr David S. Packard Jr. With thanks to Dr John DeSesso, Dr Lewis B. Holmes, Dr Mark Levinsohn, Dr David S. Packard Jr, Prof Lewis Wolpert for discussions on vascular disruption, particularly arterial dysgenesis and limb defects. We apologise to the many authors whose work we were unable to cite due to space limitations. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.Peer reviewedPostprin
- …
