615,845 research outputs found
Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado
Eight years (2002–2010) of Advanced Microwave Scanning Radiometer–EOS (AMSR-E) snow water equivalent (SWE) retrievals and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) observations are assimilated separately or jointly into the Noah land surface model over a domain in Northern Colorado. A multiscale ensemble Kalman filter (EnKF) is used, supplemented with a rule-based update. The satellite data are either left unscaled or are scaled for anomaly assimilation. The results are validated against in situ observations at 14 high-elevation Snowpack Telemetry (SNOTEL) sites with typically deep snow and at 4 lower-elevation Cooperative Observer Program (COOP) sites. Assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS SCF observations both result in realistic spatial SWE patterns. At COOP sites with shallow snowpacks, AMSR-E SWE and MODIS SCF data assimilation are beneficial separately, and joint SWE and SCF assimilation yields significantly improved root-mean-square error and correlation values for scaled and unscaled data assimilation. In areas of deep snow where the SNOTEL sites are located, however, AMSR-E retrievals are typically biased low and assimilation without prior scaling leads to degraded SWE estimates. Anomaly SWE assimilation could not improve the interannual SWE variations in the assimilation results because the AMSR-E retrievals lack realistic interannual variability in deep snowpacks. SCF assimilation has only a marginal impact at the SNOTEL locations because these sites experience extended periods of near-complete snow cover. Across all sites, SCF assimilation improves the timing of the onset of the snow season but without a net improvement of SWE amounts
Assimilation via prices or quantities? Sources of immigrant earnings growth in Australia, Canada and the United States
Using 1980/81 and 1990/91 census data from Australia, Canada, and the United States, we
estimate the effects of time in the destination country on male immigrants’ wages,
employment, and earnings. We find that total earnings assimilation is greatest in the United
States and least in Australia. Employment assimilation explains all of the earnings progress
experienced by Australian immigrants, whereas wage assimilation plays the dominant role in
the United States, and Canada falls in-between. We argue that relatively inflexible wages and
generous unemployment insurance in countries like Australia may cause assimilation to occur
along the “quantity” rather than the price dimension
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model: Conventional Observation
This paper presents an approach for employing artificial neural networks (NN)
to emulate an ensemble Kalman filter (EnKF) as a method of data assimilation.
The assimilation methods are tested in the Simplified Parameterizations
PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation
model (AGCM), using synthetic observational data simulating localization of
balloon soundings. For the data assimilation scheme, the supervised NN, the
multilayer perceptrons (MLP-NN), is applied. The MLP-NN are able to emulate the
analysis from the local ensemble transform Kalman filter (LETKF). After the
training process, the method using the MLP-NN is seen as a function of data
assimilation. The NN were trained with data from first three months of 1982,
1983, and 1984. A hind-casting experiment for the 1985 data assimilation cycle
using MLP-NN were performed with synthetic observations for January 1985. The
numerical results demonstrate the effectiveness of the NN technique for
atmospheric data assimilation. The results of the NN analyses are very close to
the results from the LETKF analyses, the differences of the monthly average of
absolute temperature analyses is of order 0.02. The simulations show that the
major advantage of using the MLP-NN is better computational performance, since
the analyses have similar quality. The CPU-time cycle assimilation with MLP-NN
is 90 times faster than cycle assimilation with LETKF for the numerical
experiment.Comment: 17 pages, 16 figures, monthly weather revie
Recommended from our members
Investigate the impacts of assimilating satellite rainfall estimates on rainstorm forecast over southwest United States
Using the MM5-4DVAR system, a monsoon rainstorm case over southern Arizona (5-6 August 2002) was investigated for the influence of assimilating satellite rainfall estimates on precipitation forecasts. A set of numerical experiments was conducted with multiple configurations including using 20-km or 30-km grid distances and none or 3-h or 6-h assimilation time windows. Results show that satellite rainfall assimilation can improve the rainstorm-forecasting pattern and amount to some extent. The minimization procedure of 4DVAR is sensitive to model spatial resolution and the assimilation time window. The 3-h assimilation window with hourly rainfall data works well for the 6-h forecast, and for 12-h or longer forecasts, a 6-h assimilation window will be requested. Copyright 2004 by the American Geophysical Union
A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation. I: Methodology
Data assimilation obtains improved estimates of the state of a physical system
by combining imperfect model results with sparse and noisy observations of reality.
Not all observations used in data assimilation are equally valuable. The ability to
characterize the usefulness of different data points is important for analyzing the
effectiveness of the assimilation system, for data pruning, and for the design of future
sensor systems.
This paper focuses on the four dimensional variational (4D-Var) data assimilation
framework. Metrics from information theory are used to quantify the contribution
of observations to decreasing the uncertainty with which the system state is known.
We establish an interesting relationship between different information-theoretic metrics
and the variational cost function/gradient under Gaussian linear assumptions.
Based on this insight we derive an ensemble-based computational procedure to estimate
the information content of various observations in the context of 4D-Var. The
approach is illustrated on linear and nonlinear test problems. In the companion paper
[Singh et al.(2011)] the methodology is applied to a global chemical data assimilation
problem
Content in the Context of 4D-Var Data Assimilation. II: Application to Global Ozone Assimilation
Data assimilation obtains improved estimates of the state of a physical system
by combining imperfect model results with sparse and noisy observations of reality.
Not all observations used in data assimilation are equally valuable. The ability to
characterize the usefulness of different data points is important for analyzing the
effectiveness of the assimilation system, for data pruning, and for the design of future
sensor systems.
In the companion paper [Sandu et al.(2011)] we derived an ensemble-based computational
procedure to estimate the information content of various observations in
the context of 4D-Var. Here we apply this methodology to quantify two information
metrics (the signal and degrees of freedom for signal) for satellite observations
used in a global chemical data assimilation problem with the GEOS-Chem chemical
transport model. The assimilation of a subset of data points characterized by the
highest information content, gives analyses that are comparable in quality with the
one obtained using the entire data set
In situ primary production in young Antarctic sea ice
An in situ incubation technique used successfully to measure the photosynthetic carbon assimilation of internal algal assemblages within thick multiyear Arctic sea ice was developed and improved to measure the photosynthetic carbon assimilation within young sea ice only 50 cm thick (Eastern Weddell Sea, Antarctica). The new device enabled some of the first precise measurements of in situ photosynthetic carbon assimilation in newly formed Antarctic sea ice
- …
