4,724 research outputs found

    Historical Background on Assessment the Performance of the Waste Isolation Pilot Plant

    Full text link

    Performance Assessments of Nuclear Waste Repositories: A Dialogue on Their Value and Limitations

    Full text link
    Performance Assessment (PA) is the use of mathematical models to simulate the long-term behavior of engineered and geologic barriers in a nuclear waste repository; methods of uncertainty analysis are used to assess effects of parametric and conceptual uncertainties associated with the model system upon the uncertainty in outcomes of the simulation. PA is required by the U.S. Environmental Protection Agency as part of its certification process for geologic repositories for nuclear waste. This paper is a dialogue to explore the value and limitations of PA. Two “skeptics” acknowledge the utility of PA in organizing the scientific investigations that are necessary for confident siting and licensing of a repository; however, they maintain that the PA process, at least as it is currently implemented, is an essentially unscientific process with shortcomings that may provide results of limited use in evaluating actual effects on public health and safety. Conceptual uncertainties in a PA analysis can be so great that results can be confidently applied only over short time ranges, the antithesis of the purpose behind long-term, geologic disposal. Two “proponents” of PA agree that performance assessment is unscientific, but only in the sense that PA is an engineering analysis that uses existing scientific knowledge to support public policy decisions, rather than an investigation intended to increase fundamental knowledge of nature; PA has different goals and constraints than a typical scientific study. The “proponents” describe an ideal, six-step process for conducting generalized PA, here called probabilistic systems analysis (PSA); they note that virtually all scientific content of a PA is introduced during the model-building steps of a PSA; they contend that a PA based on simple but scientifically acceptable mathematical models can provide useful and objective input to regulatory decision makers. The value of the results of any PA must lie between these two views and will depend on the level of knowledge of the site, the degree to which models capture actual physical and chemical processes, the time over which extrapolations are made, and the proper evaluation of health risks attending implementation of the repository. The challenge is in evaluating whether the quality of the PA matches the needs of decision makers charged with protecting the health and safety of the public.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45530/1/11161_2004_Article_220844.pd

    Survey and Evaluate Uncertainty Quantification Methodologies

    Get PDF
    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that will develop and deploy state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models with uncertainty quantification, optimization, risk analysis and decision making capabilities. The CCSI Toolset will incorporate commercial and open-source software currently in use by industry and will also develop new software tools as necessary to fill technology gaps identified during execution of the project. The CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. The goal of CCSI is to deliver a toolset that can simulate the scale-up of a broad set of new carbon capture technologies from laboratory scale to full commercial scale. To provide a framework around which the toolset can be developed and demonstrated, we will focus on three Industrial Challenge Problems (ICPs) related to carbon capture technologies relevant to U.S. pulverized coal (PC) power plants. Post combustion capture by solid sorbents is the technology focus of the initial ICP (referred to as ICP A). The goal of the uncertainty quantification (UQ) task (Task 6) is to provide a set of capabilities to the user community for the quantification of uncertainties associated with the carbon capture processes. As such, we will develop, as needed and beyond existing capabilities, a suite of robust and efficient computational tools for UQ to be integrated into a CCSI UQ software framework
    • …
    corecore