2,312 research outputs found

    What Can Wireless Cellular Technologies Do about the Upcoming Smart Metering Traffic?

    Full text link
    The introduction of smart electricity meters with cellular radio interface puts an additional load on the wireless cellular networks. Currently, these meters are designed for low duty cycle billing and occasional system check, which generates a low-rate sporadic traffic. As the number of distributed energy resources increases, the household power will become more variable and thus unpredictable from the viewpoint of the Distribution System Operator (DSO). It is therefore expected, in the near future, to have an increased number of Wide Area Measurement System (WAMS) devices with Phasor Measurement Unit (PMU)-like capabilities in the distribution grid, thus allowing the utilities to monitor the low voltage grid quality while providing information required for tighter grid control. From a communication standpoint, the traffic profile will change drastically towards higher data volumes and higher rates per device. In this paper, we characterize the current traffic generated by smart electricity meters and supplement it with the potential traffic requirements brought by introducing enhanced Smart Meters, i.e., meters with PMU-like capabilities. Our study shows how GSM/GPRS and LTE cellular system performance behaves with the current and next generation smart meters traffic, where it is clearly seen that the PMU data will seriously challenge these wireless systems. We conclude by highlighting the possible solutions for upgrading the cellular standards, in order to cope with the upcoming smart metering traffic.Comment: Submitted; change: corrected location of eSM box in Fig. 1; May 22, 2015: Major revision after review; v4: revised, accepted for publicatio

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&

    Deep Predictive Coding Neural Network for RF Anomaly Detection in Wireless Networks

    Full text link
    Intrusion detection has become one of the most critical tasks in a wireless network to prevent service outages that can take long to fix. The sheer variety of anomalous events necessitates adopting cognitive anomaly detection methods instead of the traditional signature-based detection techniques. This paper proposes an anomaly detection methodology for wireless systems that is based on monitoring and analyzing radio frequency (RF) spectrum activities. Our detection technique leverages an existing solution for the video prediction problem, and uses it on image sequences generated from monitoring the wireless spectrum. The deep predictive coding network is trained with images corresponding to the normal behavior of the system, and whenever there is an anomaly, its detection is triggered by the deviation between the actual and predicted behavior. For our analysis, we use the images generated from the time-frequency spectrograms and spectral correlation functions of the received RF signal. We test our technique on a dataset which contains anomalies such as jamming, chirping of transmitters, spectrum hijacking, and node failure, and evaluate its performance using standard classifier metrics: detection ratio, and false alarm rate. Simulation results demonstrate that the proposed methodology effectively detects many unforeseen anomalous events in real time. We discuss the applications, which encompass industrial IoT, autonomous vehicle control and mission-critical communications services.Comment: 7 pages, 7 figures, Communications Workshop ICC'1

    A Gossip Algorithm based Clock Synchronization Scheme for Smart Grid Applications

    Full text link
    The uprising interest in multi-agent based networked system, and the numerous number of applications in the distributed control of the smart grid leads us to address the problem of time synchronization in the smart grid. Utility companies look for new packet based time synchronization solutions with Global Positioning System (GPS) level accuracies beyond traditional packet methods such as Network Time Proto- col (NTP). However GPS based solutions have poor reception in indoor environments and dense urban canyons as well as GPS antenna installation might be costly. Some smart grid nodes such as Phasor Measurement Units (PMUs), fault detection, Wide Area Measurement Systems (WAMS) etc., requires synchronous accuracy as low as 1 ms. On the other hand, 1 sec accuracy is acceptable in management information domain. Acknowledging this, in this study, we introduce gossip algorithm based clock synchronization method among network entities from the decision control and communication point of view. Our method synchronizes clock within dense network with a bandwidth limited environment. Our technique has been tested in different kinds of network topologies- complete, star and random geometric network and demonstrated satisfactory performance
    • …
    corecore