1,060 research outputs found

    Multiscale numerical and experimental analysis of tribological performance of GO coating on steel substrates

    Get PDF
    Herein, nano-tribological behaviour of graphene oxide (GO) coatings is evaluated by a combination of nanoscale frictional performance and adhesion, as well as macroscale numerical modelling. A suite of characterisation techniques including atomic force microscopy (AFM) and optical interferometry are used to characterise the coatings at the asperity level. Numerical modelling is employed to consider the effectiveness of the coatings at the conjunction level. The macroscale numerical model reveals suitable deposition conditions for superior GO coatings, as confirmed by the lowest measured friction values. The proposed macroscale numerical model is developed considering both the surface shear strength of asperities of coatings obtained from AFM and the resultant morphology of the depositions obtained from surface measurements. Such a multi-scale approach, comprising numerical and experimental methods to investigate the tribological behaviour of GO tribological films has not been reported hitherto and can be applied to real-world macroscale applications such as the piston ring/cylinder liner conjunction within the modern internal combustion engine

    Friction modifier additives

    Get PDF

    Triboinformatic Approaches for Surface Characterization: Tribological and Wetting Properties

    Get PDF
    Tribology is the study of surface roughness, adhesion, friction, wear, and lubrication of interacting solid surfaces in relative motion. In addition, wetting properties are very important for surface characterization. The combination of Tribology with Machine Learning (ML) and other data-centric methods is often called Triboinformatics. In this dissertation, triboinformatic methods are applied to the study of Aluminum (Al) composites, antimicrobial, and water-repellent metallic surfaces, and organic coatings.Al and its alloys are often preferred materials for aerospace and automotive applications due to their lightweight, high strength, corrosion resistance, and other desired material properties. However, Al exhibits high friction and wear rates along with a tendency to seize under dry sliding or poor lubricating conditions. Graphite and graphene particle-reinforced Al metal matrix composites (MMCs) exhibit self-lubricating properties and they can be potential alternatives for Al alloys in dry or starved lubrication conditions. In this dissertation, artificial neural network (ANN), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), gradient boosting machine (GBM), and hybrid ensemble algorithm-based ML models have been developed to correlate the dry friction and wear of aluminum alloys, Al-graphite, and Al-graphene MMCs with material properties, the composition of alloys and MMCs, and tribological parameters. ML analysis reveals that the hardness, sliding distance, and tensile strength of the alloys influences the COF most significantly. On the other hand, the normal load, sliding speed, and hardness were the most influential parameters in predicting wear rate. The graphite content is the most significant parameter for friction and wear prediction in Al-graphite MMCs. For Al-graphene MMCs, the normal load, graphene content, and hardness are identified as the most influential parameters for COF prediction, while the graphene content, load, and hardness have the greatest influence on the wear rate. The ANN, KNN, SVM, RF, and GBM, as well as hybrid regression models (RF-GBM), with the principal component analysis (PCA) descriptors for COF and wear rate were also developed for Al-graphite MMCs in liquid-lubricated conditions. The hybrid RF-GBM models have exhibited the best predictive performance for COF and wear rate. Lubrication condition, lubricant viscosity, and applied load are identified as the most important variables for predicting wear rate and COF, and the transition from dry to lubricated friction and wear is studied. The micro- and nanoscale roughness of zinc (Zn) oxide-coated stainless steel and sonochemically treated brass (Cu Zn alloy) samples are studied using the atomic force microscopy (AFM) images to obtain the roughness parameters (standard deviation of the profile height, correlation length, the extreme point location, persistence diagrams, and barcodes). A new method of the calculation of roughness parameters involving correlation lengths, extremum point distribution, persistence diagrams, and barcodes are developed for studying the roughness patterns and anisotropic distributions inherent in coated surfaces. The analysis of the 3Ă—3, 4Ă—4, and 5Ă—5 sub-matrices or patches has revealed the anisotropic nature of the roughness profile at the nanoscale. The scale dependency of the roughness features is explained by the persistence diagrams and barcodes. Solid surfaces with water-repellent, antimicrobial, and anticorrosive properties are desired for many practical applications. TiO2/ZnO phosphate and Polymethyl Hydrogen Siloxane (PMHS) based 2-layer antimicrobial and anticorrosive coatings are synthesized and applied to steel, ceramic, and concrete substrates. Surfaces with these coatings possess complex topographies and roughness patterns, which cannot be characterized completely by the traditional analysis. Correlations between surface roughness, coefficient of friction (COF), and water contact angle for these surfaces are obtained. The hydrophobic modification in anticorrosive coatings does not make the coated surfaces slippery and retained adequate friction for transportation application. The dissertation demonstrates that Triboinformatic approaches can be successfully implemented in surface science, and tribology and they can generate novel insights into structure-property relationships in various classes of materials

    Wear and friction performance evaluation of nickel based nanocomposite coatings under refrigerant lubrication

    Get PDF
    Environmental concerns related to global warming has enforced the introduction of newly artificially formulated refrigerants. HFE-7000 is a replacement solution for the existing harmful refrigerants and thermo-fluids having a broad range of application areas including usage in green energy, low carbon technologies, in aerospace and automotive industries. In this study five different types of coatings namely, Ni-ZrO2, Ni-Al2O3, Ni-SiC, Ni-Graphene and Nickel-only have been used to study the wear and friction performance of these coatings in systems based on HFE-7000 refrigerant. Extensive experimentation has been performed on these coated contacts using a modified pressurised lubricity tester by changing the refrigerant temperature and the applied normal load in an attempt to enhance the tribological performance of interacting machine parts employing HFE-7000. EDS analysis performed on all the sample pairs within the contact region revealed the presence of fluorine and oxygen based tribo-films. These oxygenated and fluorinated tribo-films help prevent metal-to-metal contact leading to a drop in friction and wear. All coatings presented an improvement in the micro-hardness and in hardness to elastic modulus ratio compared to uncoated steel. The results of friction and wear of coated samples were compared to uncoated steel as well. The results show an improvement in wear and friction at most of the operating conditions by applying nickel based coatings on a steel substrate in the presence of HFE-7000. Friction and wear performance of nickel based coatings does drop for some of the coatings at particular testing conditions which leads to conclude that a careful selection of the coatings has to be made depending on the operating refrigerant temperature and load. The results of this study provide a guideline and will be extremely useful in selecting the type of coating based on the application area

    Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films Under Lubricated Sliding Contacts

    Get PDF
    Diamond-like carbon (DLC) coatings have proven to be an excellent thin film solution for reducing friction of tribological systems as well as providing resistance to wear. These characteristics yield greater efficiency and longer lifetimes of tribological contacts with respect to surface solutions targeting for example automotive applications. However, the route from discovery to deployment of DLC films has taken its time and still the design of these solutions is largely done on a trial-and-error basis. This results in challenges both in designing and optimizing DLC films for specific applications and limits the understanding, and subsequently exploitation, of many of the underlying physical mechanisms responsible for its favorable frictional response and high resistance to various types of wear. In current work multiscale modeling is utilized to study the friction and wear response of DLC thin films in dry and lubricated contacts. Atomic scale mechanisms responsible for friction due to interactions between the sliding surfaces and shearing of the amorphous carbon surface are utilized to establish frictional response for microstructure scale modeling of DLC to DLC surface contacts under dry and graphene lubricated conditions. Then at the coarser microstructural scale both structure of the multilayer, substrate and surface topography of the DLC coating are incorporated in studying of the behavior of the tribosystem. A fracture model is included to evaluate the nucleation and growth of wear damage leading either to loss of adhesion or failure of one of the film constituents. The results demonstrate the dependency of atomistic scale friction on film characteristics, particularly hybridization of bonding and tribochemistry. The microstructure scale modeling signifies the behavior of the film as a tribosystem, the various material properties and the surface topography interact to produce the explicitly modeled failure response. Ultimately, the work contributes towards establishing multiscale modeling capabilities to better understand and design novel DLC material solutions for various tribological applications

    Improving tribomechanical properties of polymeric nanocomposite coatings

    Get PDF
    Low friction, high wear resistance and strong adhesion in polymeric coatings employed in a variety of industrial and domestic processes such as in ball bearings, water repellent surfaces, antiadhesive coatings, and anticorrosion systems are of significant interest for energy saving and durability purposes. Even small increases in friction can have implications on energy efficiency, life time expectancy and performance of such coatings

    Influence of processing conditions on microstructural, mechanical and tribological properties of graphene nanoplatelet reinforced UHMWPE

    Get PDF
    Ultra-high molecular weight polyethylene (UHMWPE) is a relevant thermoplastic in industry and a well-proven standard biomaterial in joint replacements. To enhance its tribological properties while preserving its bulk ones, composite coatings on a UHMWPE substrate were prepared using non-functionalised graphene nanoplatelet (GNP) at reinforcement concentration of 0.1–5 wt% and two mechanical mixing techniques (ball mill or blade mixer) with different consolidation temperatures of 175–240 °C. Changes in morphology and size of the UHMWPE particles before hot-pressing were observed in function of the mechanical mixing techniques applied. Wear rate was affected by graphene content, reaching a minimum at 0.5 wt% GNP, with a reduction of 20 and 15%, for ball milling and blade mixer, respectively. However, blade mixer increased the wear rate by around twice respect the ball milling results, for all the studied materials. The coefficient of friction decreased notably, by ~25%, below 3 wt% GNP content, and hardness increased by 24%, regardless of the mechanical mixing process used. Finally, consolidation temperature had a positive influence on wear rate at temperatures of around 195 °C, which could be related to the free radical scavenger effect of the GNP
    • …
    corecore