3 research outputs found

    Assertion-based QA with Question-Aware Open Information Extraction

    Full text link
    We present assertion based question answering (ABQA), an open domain question answering task that takes a question and a passage as inputs, and outputs a semi-structured assertion consisting of a subject, a predicate and a list of arguments. An assertion conveys more evidences than a short answer span in reading comprehension, and it is more concise than a tedious passage in passage-based QA. These advantages make ABQA more suitable for human-computer interaction scenarios such as voice-controlled speakers. Further progress towards improving ABQA requires richer supervised dataset and powerful models of text understanding. To remedy this, we introduce a new dataset called WebAssertions, which includes hand-annotated QA labels for 358,427 assertions in 55,960 web passages. To address ABQA, we develop both generative and extractive approaches. The backbone of our generative approach is sequence to sequence learning. In order to capture the structure of the output assertion, we introduce a hierarchical decoder that first generates the structure of the assertion and then generates the words of each field. The extractive approach is based on learning to rank. Features at different levels of granularity are designed to measure the semantic relevance between a question and an assertion. Experimental results show that our approaches have the ability to infer question-aware assertions from a passage. We further evaluate our approaches by incorporating the ABQA results as additional features in passage-based QA. Results on two datasets show that ABQA features significantly improve the accuracy on passage-based~QA.Comment: To be published at AAAI 201

    Knowledge Based Machine Reading Comprehension

    Full text link
    Machine reading comprehension (MRC) requires reasoning about both the knowledge involved in a document and knowledge about the world. However, existing datasets are typically dominated by questions that can be well solved by context matching, which fail to test this capability. To encourage the progress on knowledge-based reasoning in MRC, we present knowledge-based MRC in this paper, and build a new dataset consisting of 40,047 question-answer pairs. The annotation of this dataset is designed so that successfully answering the questions requires understanding and the knowledge involved in a document. We implement a framework consisting of both a question answering model and a question generation model, both of which take the knowledge extracted from the document as well as relevant facts from an external knowledge base such as Freebase/ProBase/Reverb/NELL. Results show that incorporating side information from external KB improves the accuracy of the baseline question answer system. We compare it with a standard MRC model BiDAF, and also provide the difficulty of the dataset and lay out remaining challenges

    Tag and Correct: Question aware Open Information Extraction with Two-stage Decoding

    Full text link
    Question Aware Open Information Extraction (Question aware Open IE) takes question and passage as inputs, outputting an answer tuple which contains a subject, a predicate, and one or more arguments. Each field of answer is a natural language word sequence and is extracted from the passage. The semi-structured answer has two advantages which are more readable and falsifiable compared to span answer. There are two approaches to solve this problem. One is an extractive method which extracts candidate answers from the passage with the Open IE model, and ranks them by matching with questions. It fully uses the passage information at the extraction step, but the extraction is independent to the question. The other one is the generative method which uses a sequence to sequence model to generate answers directly. It combines the question and passage as input at the same time, but it generates the answer from scratch, which does not use the facts that most of the answer words come from in the passage. To guide the generation by passage, we present a two-stage decoding model which contains a tagging decoder and a correction decoder. At the first stage, the tagging decoder will tag keywords from the passage. At the second stage, the correction decoder will generate answers based on tagged keywords. Our model could be trained end-to-end although it has two stages. Compared to previous generative models, we generate better answers by generating coarse to fine. We evaluate our model on WebAssertions (Yan et al., 2018) which is a Question aware Open IE dataset. Our model achieves a BLEU score of 59.32, which is better than previous generative methods.Comment: 11 pages, 1 figure, 4 table
    corecore