973 research outputs found

    Assembling convolution neural networks for automatic viewing transformation

    Get PDF
    Images taken under different camera poses are rotated or distorted, which leads to poor perception experiences. This paper proposes a new framework to automatically transform the images to the conformable view setting by assembling different convolution neural networks. Specifically, a referential 3D ground plane is firstly derived from the RGB image and a novel projection mapping algorithm is developed to achieve automatic viewing transformation. Extensive experimental results demonstrate that the proposed method outperforms the state-ofthe-art vanishing points based methods by a large margin in terms of accuracy and robustness

    An Innovative Method for Lung Cancer Identification Using Machine Learning Algorithms

    Get PDF
    Biological community and the healthcare sector have greatly benefited from technological advancements in biomedical imaging.  These advantages include early cancer identification and categorization, prognostication of patients' clinical outcomes following cancer surgery, and prognostication of survival for various cancer types. Medical professionals must spend a lot of time and effort gathering, analyzing, and evaluating enormous amounts of wellness data, such as scan results. Although radiologists spend a lot of time carefully reviewing several scans, tiny nodule diagnosis is incredibly prone to inaccuracy. Low dose computed tomography (LDCT) scans are used to categorize benign (Noncancerous) and malignant (Cancerous) nodules in order to study the issue of lung cancer (LC) diagnosis. Machine learning (ML), Deep learning (DL), and Artificial intelligence (AI) applications aid in the rapid identification of a number of infectious and malignant diseases, including lung cancer, using cutting-edge convolutional neural network (CNN) and Deep CNN architectures, we propose three unique detection models in this study: SEQUENTIAL 1 (Model-1), SEQUENTIAL 2 (Model-2), and transfer learning model Visual Geometry Group, VGG 16 (Model-3). The best accuracy model and methodology that are proposedas an effective and non-invasive diagnostic tool, outperforms other models trained with similar labels using lung CT scans to identify malignant nodules. Using a standard LIDC-IDRI data set that is freely available, the deep learning models are verified. The results of the experiment show a decrease in false positives while an increase in accuracy

    DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

    Get PDF
    Face modeling has been paid much attention in the field of visual computing. There exist many scenarios, including cartoon characters, avatars for social media, 3D face caricatures as well as face-related art and design, where low-cost interactive face modeling is a popular approach especially among amateur users. In this paper, we propose a deep learning based sketching system for 3D face and caricature modeling. This system has a labor-efficient sketching interface, that allows the user to draw freehand imprecise yet expressive 2D lines representing the contours of facial features. A novel CNN based deep regression network is designed for inferring 3D face models from 2D sketches. Our network fuses both CNN and shape based features of the input sketch, and has two independent branches of fully connected layers generating independent subsets of coefficients for a bilinear face representation. Our system also supports gesture based interactions for users to further manipulate initial face models. Both user studies and numerical results indicate that our sketching system can help users create face models quickly and effectively. A significantly expanded face database with diverse identities, expressions and levels of exaggeration is constructed to promote further research and evaluation of face modeling techniques.Comment: 12 pages, 16 figures, to appear in SIGGRAPH 201

    A deep-learning approach to assess respiratory effort with a chest-worn accelerometer during sleep

    Get PDF
    Objective: The objective is to develop a new deep learning method for the estimation of respiratory effort from a chest-worn accelerometer during sleep. We evaluate performance, compare it against a state-of-the art method, and assess whether it can differentiate between sleep stages. Methods: In 146 participants undergoing overnight polysomnography data were collected from an accelerometer worn on the chest. The study data were partitioned into train, validation, and holdout (test) sets. We used the train and validation sets to generate and train a convolutional neural network and performed model selection respectively, while we used the holdout set (72 participants) to evaluate performance. Results: A convolutional neural network with 9 layers and 207,855 parameters was automatically generated and trained. The neural network significantly outperformed the best performing conventional method, based on Principal Component Analysis; it reduced the Mean Squared Error from 0.26 to 0.11 and it also performed better in the detection of breaths (Sensitivity 98.4 %, PPV 98.2 %). In addition, the neural network exposed significant differences in characteristics of respiratory effort between sleep stages (p &lt; 0.001). Conclusion: The deep learning method predicts respiratory effort with low error and is sensitive and precise in the detection of breaths. In addition, it reproduces differences between sleep stages, which may enable automatic sleep staging, using just a chest-worn accelerometer.</p

    Inferring Implicit 3D Representations from Human Figures on Pictorial Maps

    Full text link
    In this work, we present an automated workflow to bring human figures, one of the most frequently appearing entities on pictorial maps, to the third dimension. Our workflow is based on training data and neural networks for single-view 3D reconstruction of real humans from photos. We first let a network consisting of fully connected layers estimate the depth coordinate of 2D pose points. The gained 3D pose points are inputted together with 2D masks of body parts into a deep implicit surface network to infer 3D signed distance fields (SDFs). By assembling all body parts, we derive 2D depth images and body part masks of the whole figure for different views, which are fed into a fully convolutional network to predict UV images. These UV images and the texture for the given perspective are inserted into a generative network to inpaint the textures for the other views. The textures are enhanced by a cartoonization network and facial details are resynthesized by an autoencoder. Finally, the generated textures are assigned to the inferred body parts in a ray marcher. We test our workflow with 12 pictorial human figures after having validated several network configurations. The created 3D models look generally promising, especially when considering the challenges of silhouette-based 3D recovery and real-time rendering of the implicit SDFs. Further improvement is needed to reduce gaps between the body parts and to add pictorial details to the textures. Overall, the constructed figures may be used for animation and storytelling in digital 3D maps.Comment: to be published in 'Cartography and Geographic Information Science

    A wavelet packet approach to transient signal classification

    Get PDF
    Caption title.Includes bibliographical references (p. 34).Supported by the Charles Stark Draper Laboratory under a research fellowship. Supported by the Draper Laboratory IR&D Program. DL-H-467133 Supported by the Air Force Office of Scientific Research. AFSOR-92-J-0002 Supported by the Army Research Office. DAAL03-92-G-0115Rachel E. Learned, Alan S. Willsky

    Development of Machine Learning Based Analytical Tools for Pavement Performance Assessment and Crack Detection

    Get PDF
    Pavement Management System (PMS) analytical tools mainly consist of pavement condition investigation and evaluation tools, pavement condition rating and assessment tools, pavement performance prediction tools, treatment prioritizations and implementation tools. The effectiveness of a PMS highly depends on the efficiency and reliability of its pavement condition evaluation tools. Traditionally, pavement condition investigation and evaluation practices are based on manual distress surveys and performance level assessments, which have been blamed for low efficiency low reliability. Those kinds of manually surveys are labor intensive and unsafe due to proximity to live traffic conditions. Meanwhile, the accuracy can be lower due to the subjective nature of the evaluators. Considering these factors, semiautomated and automated pavement condition evaluation tools had been developed for several years. In current years, it is undoubtable that highly advanced computerized technologies have resulted successful applications in diverse engineering fields. Therefore, these techniques can be successfully incorporated into pavement condition evaluation distress detection, the analytical tools can improve the performance of existing PMSs. Hence, this research aims to bridge the gaps between highly advanced Machine Learning Techniques (MLTs) and the existing analytical tools of current PMSs. The research outputs intend to provide pavement condition evaluation tools that meet the requirement of high efficiency, accuracy, and reliability. To achieve the objectives of this research, six pavement damage condition and performance evaluation methodologies are developed. The roughness condition of pavement surface directly influences the riding quality of the users. International Roughness Index (IRI) is used worldwide by research institutions, pavement condition evaluation and management agencies to evaluate the roughness condition of the pavement. IRI is a time-dependent variable which generally tends to increase with the increase of the pavement service life. In this consideration, a multi-granularity fuzzy time series analysis based IRI prediction model is developed. Meanwhile, Particle Swarm Optimization (PSO) method is used for model optimization to obtain satisfactory IRI prediction results. Historical IRI data extracted from the InfoPave website have been used for training and testing the model. Experiment results proved the effectiveness of this method. Automated pavement condition evaluation tools can provide overall performance indices, which can then be used for treatment planning. The calculations of those performance indices are required for surface distress level and roughness condition evaluations. However, pavement surface roughness conditions are hard to obtain from surface image indicators. With this consideration, an image indicators-based pavement roughness and the overall performance prediction tools are developed. The state-of-the-art machine learning technique, XGBoost, is utilized as the main method in model training, validating and testing. In order to find the dominant image indicators that influence the pavement roughness condition and the overall performance conditions, the comprehensive pavement performance evaluation data collected by ARAN 900 are analyzed. Back Propagation Neural Network (BPNN) is used to develop the performance prediction models. On this basis, the mean important values (MIVs) for each input factor are calculated to evaluate the contributions of the input indicators. It has been observed that indicators of the wheel path cracking have the highest MIVs, which emphasizes the importance of cracking-focused maintenance treatments. The same issue is also found that current automated pavement condition evaluation systems only include the analysis of pavement surface distresses, without considering the structural capacity of the actual pavement. Hence, the structural performance analysis-based pavement performance prediction tools are developed using the Support Vector Machines (SVMs). To guarantee the overall performance of the proposed methodologies, heuristic methods including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are selected to optimize the model. The experiments results show a promising future of machine learning based pavement structural performance prediction. Automated pavement condition analyzers usually detect pavement surface distress through the collected pavement surface images. Then, distress types, severities, quantities, and other parameters are calculated for the overall performance index calculation. Cracks are one of the most important pavement surface distresses that should be quantified. Traditional approaches are less accurate and efficient in locating, counting and quantifying various types of cracks initialed on the pavement surface. An integrated Crack Deep Net (CrackDN) is developed based on deep learning technologies. Through model training, validation and testing, it has proved that CrackDN can detect pavement surface cracks on complex background with high accuracy. Moreover, the combination of box-level pavement crack locating, and pixel-level crack calculation can achieve comprehensive crack analysis. Thereby, more effective maintenance treatments can be assigned. Hence, a methodology regarding pixel-level crack detection which is called CrackU-net, is proposed. CrackU-net is composed of several convolutional, maxpooling, and up-convolutional layers. The model is developed based on the innovations of deep learning-based segmentation. Pavement crack data are collected by multiple devices, including automated pavement condition survey vehicles, smartphones, and action cameras. The proposed CrackU-net is tested on a separate crack image set which has not been used for training the model. The results demonstrate a promising future of use in the PMSs. Finally, the proposed toolboxes are validated through comparative experiments in terms of accuracy (precision, recall, and F-measure) and error levels. The accuracies of all those models are higher than 0.9 and the errors are lower than 0.05. Meanwhile, the findings of this research suggest that the wheel path cracking should be a priority when conducting maintenance activity planning. Benefiting from the highly advanced machine learning technologies, pavement roughness condition and the overall performance levels have a promising future of being predicted by extraction of the image indicators. Moreover, deep learning methods can be utilized to achieve both box-level and pixel-level pavement crack detection with satisfactory performance. Therefore, it is suggested that those state-of-the-art toolboxes be integrated into current PMSs to upgrade their service levels

    Development of Machine Learning Based Analytical Tools for Pavement Performance Assessment and Crack Detection

    Get PDF
    Pavement Management System (PMS) analytical tools mainly consist of pavement condition investigation and evaluation tools, pavement condition rating and assessment tools, pavement performance prediction tools, treatment prioritizations and implementation tools. The effectiveness of a PMS highly depends on the efficiency and reliability of its pavement condition evaluation tools. Traditionally, pavement condition investigation and evaluation practices are based on manual distress surveys and performance level assessments, which have been blamed for low efficiency low reliability. Those kinds of manually surveys are labor intensive and unsafe due to proximity to live traffic conditions. Meanwhile, the accuracy can be lower due to the subjective nature of the evaluators. Considering these factors, semiautomated and automated pavement condition evaluation tools had been developed for several years. In current years, it is undoubtable that highly advanced computerized technologies have resulted successful applications in diverse engineering fields. Therefore, these techniques can be successfully incorporated into pavement condition evaluation distress detection, the analytical tools can improve the performance of existing PMSs. Hence, this research aims to bridge the gaps between highly advanced Machine Learning Techniques (MLTs) and the existing analytical tools of current PMSs. The research outputs intend to provide pavement condition evaluation tools that meet the requirement of high efficiency, accuracy, and reliability. To achieve the objectives of this research, six pavement damage condition and performance evaluation methodologies are developed. The roughness condition of pavement surface directly influences the riding quality of the users. International Roughness Index (IRI) is used worldwide by research institutions, pavement condition evaluation and management agencies to evaluate the roughness condition of the pavement. IRI is a time-dependent variable which generally tends to increase with the increase of the pavement service life. In this consideration, a multi-granularity fuzzy time series analysis based IRI prediction model is developed. Meanwhile, Particle Swarm Optimization (PSO) method is used for model optimization to obtain satisfactory IRI prediction results. Historical IRI data extracted from the InfoPave website have been used for training and testing the model. Experiment results proved the effectiveness of this method. Automated pavement condition evaluation tools can provide overall performance indices, which can then be used for treatment planning. The calculations of those performance indices are required for surface distress level and roughness condition evaluations. However, pavement surface roughness conditions are hard to obtain from surface image indicators. With this consideration, an image indicators-based pavement roughness and the overall performance prediction tools are developed. The state-of-the-art machine learning technique, XGBoost, is utilized as the main method in model training, validating and testing. In order to find the dominant image indicators that influence the pavement roughness condition and the overall performance conditions, the comprehensive pavement performance evaluation data collected by ARAN 900 are analyzed. Back Propagation Neural Network (BPNN) is used to develop the performance prediction models. On this basis, the mean important values (MIVs) for each input factor are calculated to evaluate the contributions of the input indicators. It has been observed that indicators of the wheel path cracking have the highest MIVs, which emphasizes the importance of cracking-focused maintenance treatments. The same issue is also found that current automated pavement condition evaluation systems only include the analysis of pavement surface distresses, without considering the structural capacity of the actual pavement. Hence, the structural performance analysis-based pavement performance prediction tools are developed using the Support Vector Machines (SVMs). To guarantee the overall performance of the proposed methodologies, heuristic methods including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are selected to optimize the model. The experiments results show a promising future of machine learning based pavement structural performance prediction. Automated pavement condition analyzers usually detect pavement surface distress through the collected pavement surface images. Then, distress types, severities, quantities, and other parameters are calculated for the overall performance index calculation. Cracks are one of the most important pavement surface distresses that should be quantified. Traditional approaches are less accurate and efficient in locating, counting and quantifying various types of cracks initialed on the pavement surface. An integrated Crack Deep Net (CrackDN) is developed based on deep learning technologies. Through model training, validation and testing, it has proved that CrackDN can detect pavement surface cracks on complex background with high accuracy. Moreover, the combination of box-level pavement crack locating, and pixel-level crack calculation can achieve comprehensive crack analysis. Thereby, more effective maintenance treatments can be assigned. Hence, a methodology regarding pixel-level crack detection which is called CrackU-net, is proposed. CrackU-net is composed of several convolutional, maxpooling, and up-convolutional layers. The model is developed based on the innovations of deep learning-based segmentation. Pavement crack data are collected by multiple devices, including automated pavement condition survey vehicles, smartphones, and action cameras. The proposed CrackU-net is tested on a separate crack image set which has not been used for training the model. The results demonstrate a promising future of use in the PMSs. Finally, the proposed toolboxes are validated through comparative experiments in terms of accuracy (precision, recall, and F-measure) and error levels. The accuracies of all those models are higher than 0.9 and the errors are lower than 0.05. Meanwhile, the findings of this research suggest that the wheel path cracking should be a priority when conducting maintenance activity planning. Benefiting from the highly advanced machine learning technologies, pavement roughness condition and the overall performance levels have a promising future of being predicted by extraction of the image indicators. Moreover, deep learning methods can be utilized to achieve both box-level and pixel-level pavement crack detection with satisfactory performance. Therefore, it is suggested that those state-of-the-art toolboxes be integrated into current PMSs to upgrade their service levels
    • …
    corecore