133,915 research outputs found

    Aspect-Oriented Programming using Composition-Filters

    Get PDF
    Software engineers may experience problems in modeling certain aspects while applying object-oriented techniques [4, 10, 11]. Composition-Filters are capable of expressing various different kinds of aspects in a uniform manner. These aspects are, for example, inheritance and delegation [1] and atomic delegation [2], multiple views, dynamic inheritance and queries on objects [3], coordinated behavior and inter-object constraints [5], real-time [6] and composing real-time and synchronization together [9], synchronization [8] and distributed synchronization [7], and client-server architectures [10]

    Synchronization of Random Linear Maps

    Full text link
    We study synchronization of random one-dimensional linear maps for which the Lyapunov exponent can be calculated exactly. Certain aspects of the dynamics of these maps are explained using their relation with a random walk. We confirm that the Lyapunov exponent changes sign at the complete synchronization transition. We also consider partial synchronization of nonidentical systems. It turns out that the way partial synchronization manifests depends on the type of differences (in Lyapunov exponent or in contraction points) between the systems. The crossover from partial synchronization to complete synchronization is also examined.Comment: 5 pages, 6 figure

    Some aspects of the synchronization in coupled maps

    Full text link
    Through numerical simulations we analyze the synchronization time and the Lyapunov dimension of a coupled map lattice consisting of a chain of chaotic logistic maps exhibiting power law interactions. From the observed behaviors we find a lower bound for the size NN of the lattice, independent of the range and strength of the interaction, which imposes a practical lower bound in numerical simulations for the system to be considered in the thermodynamic limit. We also observe the existence of a strong correlation between the averaged synchronization time and the Lyapunov dimension. This is an interesting result because it allows an analytical estimation of the synchronization time, which otherwise requires numerical simulations.Comment: 4 pages, 6 figure

    Jeeg: Temporal Constraints for the Synchronization of Concurrent Objects

    No full text
    We introduce Jeeg, a dialect of Java based on a declarative replacement of the synchronization mechanisms of Java that results in a complete decoupling of the 'business' and the 'synchronization' code of classes. Synchronization constraints in Jeeg are expressed in a linear temporal logic which allows to effectively limit the occurrence of the inheritance anomaly that commonly affects concurrent object oriented languages. Jeeg is inspired by the current trend in aspect oriented languages. In a Jeeg program the sequential and concurrent aspects of object behaviors are decoupled: specified separately by the programmer these are then weaved together by the Jeeg compiler

    Synchronization Gauges and the Principles of Special Relativity

    Full text link
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light on inertial and rotating reference frames, the GPS's working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday
    • …
    corecore