1,279 research outputs found

    The DistilBERT Model: A Promising Approach to Improve Machine Reading Comprehension Models

    Get PDF
    Machine Reading Comprehension (MRC) is a challenging task in the field of Natural Language Processing (NLP), where a machine is required to read a given text passage and answer a set of questions based on it. This paper provides an overview of recent advances in MRC and highlights some of the key challenges and future directions of this research area. It also evaluates the performance of several baseline models on the dataset, evaluates the challenges that the dataset poses for existing MRC models, and introduces the DistilBERT model to improve the accuracy of the answer extraction process. The supervised paradigm for training machine reading and comprehension models represents a practical path forward for creating comprehensive natural language understanding systems. To enhance the DistilBERT basic model's functionality, we have experimented with a variety of question heads that differ in the number of layers, activation function, and general structure. DistilBERT is a model for question-resolution tasks that is successful and delivers state-of-the-art performance while requiring less computational resources than large models like BERT, according to the presented technique. We could enhance the model's functionality and obtain a better understanding of how the model functions by investigating other question head architectures. These findings could serve as a foundation for future study on how to make question-and-answer systems and other tasks connected to the processing of natural languages. &nbsp

    A Brief History of Prompt: Leveraging Language Models. (Through Advanced Prompting)

    Full text link
    This paper presents a comprehensive exploration of the evolution of prompt engineering and generation in the field of natural language processing (NLP). Starting from the early language models and information retrieval systems, we trace the key developments that have shaped prompt engineering over the years. The introduction of attention mechanisms in 2015 revolutionized language understanding, leading to advancements in controllability and context-awareness. Subsequent breakthroughs in reinforcement learning techniques further enhanced prompt engineering, addressing issues like exposure bias and biases in generated text. We examine the significant contributions in 2018 and 2019, focusing on fine-tuning strategies, control codes, and template-based generation. The paper also discusses the growing importance of fairness, human-AI collaboration, and low-resource adaptation. In 2020 and 2021, contextual prompting and transfer learning gained prominence, while 2022 and 2023 witnessed the emergence of advanced techniques like unsupervised pre-training and novel reward shaping. Throughout the paper, we reference specific research studies that exemplify the impact of various developments on prompt engineering. The journey of prompt engineering continues, with ethical considerations being paramount for the responsible and inclusive future of AI systems

    Knowing What, How and Why: A Near Complete Solution for Aspect-based Sentiment Analysis

    Full text link
    Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from "Waiters are very friendly and the pasta is simply average" could be ('Waiters', positive, 'friendly'). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.Comment: This paper is accepted in AAAI 202

    Enhancing natural language understanding using meaning representation and deep learning

    Get PDF
    Natural Language Understanding (NLU) is one of the complex tasks in artificial intelligence. Machine learning was introduced to address the complex and dynamic nature of natural language. Deep learning gained popularity within the NLU community due to its capability of learning features directly from data, as well as learning from the dynamic nature of natural language. Furthermore, deep learning has shown to be able to learn the hidden feature(s) automatically and outperform most of the other machine learning approaches for NLU. Deep learning models require natural language inputs to be converted to vectors (word embedding). Word2Vec and GloVe are word embeddings which are designed to capture the analogy context-based statistics and provide lexical relations on words. Using the context-based statistical approach does not capture the prior knowledge required to understand language combined with words. Although a deep learning model receives word embedding, language understanding requires Reasoning, Attention and Memory (RAM). RAM are key factors in understanding language. Current deep learning models focus either on reasoning, attention or memory. In order to properly understand a language however, all three factors of RAM should be considered. Also, a language normally has a long sequence. This long sequence creates dependencies which are required in order to understand a language. However, current deep learning models, which are developed to hold longer sequences, either forget or get affected by the vanishing or exploding gradient descent. In this thesis, these three main areas are of focus. A word embedding technique, which integrates analogy context-based statistical and semantic relationships, as well as extracts from a knowledge base to hold enhanced meaning representation, is introduced. Also, a Long Short-Term Reinforced Memory (LSTRM) network is introduced. This addresses RAM and is validated by testing on question answering data sets which require RAM. Finally, a Long Term Memory Network (LTM) is introduced to address language modelling. Good language modelling requires learning from long sequences. Therefore, this thesis demonstrates that integrating semantic knowledge and a knowledge base generates enhanced meaning and deep learning models that are capable of achieving RAM and long-term dependencies so as to improve the capability of NLU
    • …
    corecore