1,113 research outputs found

    Part Detector Discovery in Deep Convolutional Neural Networks

    Full text link
    Current fine-grained classification approaches often rely on a robust localization of object parts to extract localized feature representations suitable for discrimination. However, part localization is a challenging task due to the large variation of appearance and pose. In this paper, we show how pre-trained convolutional neural networks can be used for robust and efficient object part discovery and localization without the necessity to actually train the network on the current dataset. Our approach called "part detector discovery" (PDD) is based on analyzing the gradient maps of the network outputs and finding activation centers spatially related to annotated semantic parts or bounding boxes. This allows us not just to obtain excellent performance on the CUB200-2011 dataset, but in contrast to previous approaches also to perform detection and bird classification jointly without requiring a given bounding box annotation during testing and ground-truth parts during training. The code is available at http://www.inf-cv.uni-jena.de/part_discovery and https://github.com/cvjena/PartDetectorDisovery.Comment: Accepted for publication on Asian Conference on Computer Vision (ACCV) 201

    Deep Depth From Focus

    Full text link
    Depth from focus (DFF) is one of the classical ill-posed inverse problems in computer vision. Most approaches recover the depth at each pixel based on the focal setting which exhibits maximal sharpness. Yet, it is not obvious how to reliably estimate the sharpness level, particularly in low-textured areas. In this paper, we propose `Deep Depth From Focus (DDFF)' as the first end-to-end learning approach to this problem. One of the main challenges we face is the hunger for data of deep neural networks. In order to obtain a significant amount of focal stacks with corresponding groundtruth depth, we propose to leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us to digitally create focal stacks of varying sizes. Compared to existing benchmarks our dataset is 25 times larger, enabling the use of machine learning for this inverse problem. We compare our results with state-of-the-art DFF methods and we also analyze the effect of several key deep architectural components. These experiments show that our proposed method `DDFFNet' achieves state-of-the-art performance in all scenes, reducing depth error by more than 75% compared to the classical DFF methods.Comment: accepted to Asian Conference on Computer Vision (ACCV) 201

    A Multi-scale Bilateral Structure Tensor Based Corner Detector

    Full text link
    9th Asian Conference on Computer Vision, ACCV 2009, Xi'an, 23-27 September 2009In this paper, a novel multi-scale nonlinear structure tensor based corner detection algorithm is proposed to improve effectively the classical Harris corner detector. By considering both the spatial and gradient distances of neighboring pixels, a nonlinear bilateral structure tensor is constructed to examine the image local pattern. It can be seen that the linear structure tensor used in the original Harris corner detector is a special case of the proposed bilateral one by considering only the spatial distance. Moreover, a multi-scale filtering scheme is developed to tell the trivial structures from true corners based on their different characteristics in multiple scales. The comparison between the proposed approach and four representative and state-of-the-art corner detectors shows that our method has much better performance in terms of both detection rate and localization accuracy.Department of ComputingRefereed conference pape

    Novel-View Human Action Synthesis

    Full text link
    Novel-View Human Action Synthesis aims to synthesize the movement of a body from a virtual viewpoint, given a video from a real viewpoint. We present a novel 3D reasoning to synthesize the target viewpoint. We first estimate the 3D mesh of the target body and transfer the rough textures from the 2D images to the mesh. As this transfer may generate sparse textures on the mesh due to frame resolution or occlusions. We produce a semi-dense textured mesh by propagating the transferred textures both locally, within local geodesic neighborhoods, and globally, across symmetric semantic parts. Next, we introduce a context-based generator to learn how to correct and complete the residual appearance information. This allows the network to independently focus on learning the foreground and background synthesis tasks. We validate the proposed solution on the public NTU RGB+D dataset. The code and resources are available at https://bit.ly/36u3h4K.Comment: Asian Conference on Computer Vision (ACCV) 202
    corecore