1,429 research outputs found

    An efficient analog circuit sizing method based on machine learning assisted global optimization

    Get PDF
    Machine learning-assisted global optimization methods for speeding up analog integrated circuit sizing is attracting much attention. However, often a few typical analog IC design specifications are considered in most relevant research. When considering the complete set of specifications, two main challenges are yet to be addressed: (1) The prediction error for some performances may be large and the prediction error is accumulated by many performances. This may mislead the optimization and fail the sizing, especially when the specifications are stringent. (2) The machine learning cost could be high considering the number of specifications, considerably canceling out the time saved. A new method, called Efficient Surrogate Model-assisted Sizing Method for High-performance Analog Building Blocks (ESSAB), is proposed in this paper to address the above challenges. The key innovations include a new candidate design ranking method and a new artificial neural network model construction method for analog circuit performances. Experiments using two amplifiers and a comparator with a complete set of stringent design specifications show the advantages of ESSAB

    A Review of Bayesian Methods in Electronic Design Automation

    Full text link
    The utilization of Bayesian methods has been widely acknowledged as a viable solution for tackling various challenges in electronic integrated circuit (IC) design under stochastic process variation, including circuit performance modeling, yield/failure rate estimation, and circuit optimization. As the post-Moore era brings about new technologies (such as silicon photonics and quantum circuits), many of the associated issues there are similar to those encountered in electronic IC design and can be addressed using Bayesian methods. Motivated by this observation, we present a comprehensive review of Bayesian methods in electronic design automation (EDA). By doing so, we hope to equip researchers and designers with the ability to apply Bayesian methods in solving stochastic problems in electronic circuits and beyond.Comment: 24 pages, a draft version. We welcome comments and feedback, which can be sent to [email protected]

    Aging-Aware Design Methods for Reliable Analog Integrated Circuits using Operating Point-Dependent Degradation

    Get PDF
    The focus of this thesis is on the development and implementation of aging-aware design methods, which are suitable to satisfy current needs of analog circuit design. Based on the well known \gm/\ID sizing methodology, an innovative tool-assisted aging-aware design approach is proposed, which is able to estimate shifts in circuit characteristics using mostly hand calculation schemes. The developed concept of an operating point-dependent degradation leads to the definition of an aging-aware sensitivity, which is compared to currently available degradation simulation flows and proves to be efficient in the estimation of circuit degradation. Using the aging-aware sensitivity, several analog circuits are investigated and optimized towards higher reliability. Finally, results are presented for numerous target specifications

    Optimized Design of a Self-Biased Amplifier for Seizure Detection Supplied by Piezoelectric Nanogenerator: Metaheuristic Algorithms versus ANN-Assisted Goal Attainment Method

    Get PDF
    This work is dedicated to parameter optimization for a self-biased amplifier to be used in preamplifiers for the diagnosis of seizures in neuro-diseases such as epilepsy. For the sake of maximum compactness, which is obligatory for all implantable devices, power is to be supplied by a piezoelectric nanogenerator (PENG). Several meta-heuristic optimization algorithms and an ANN (artificial neural network)-assisted goal attainment method were applied to the circuit, aiming to provide us with the set of optimal design parameters which ensure the minimal overall area of the preamplifier. These parameters are the slew rate, load capacitor, gain–bandwidth product, maximal input voltage, minimal input voltage, input voltage, reference voltage, and dissipation power. The results are re-evaluated and compared in the Cadence 180 nm SCL environment. It has been observed that, among the metaheuristic algorithms, the whale optimization technique reached the best values at low computational cost, decreased complexity, and the highest convergence speed. However, all metaheuristic algorithms were outperformed by the ANN-assisted goal attainment method, which produced a roughly 50% smaller overall area of the preamplifier. All the techniques described here are applicable to the design and optimization of wearable or implantable circuits

    Microelectronic cmos implementation of a machine learning technique for sensor calibration

    Get PDF
    An integrated machine-learning based adaptive circuit for sensor calibration implemented in standard 0.18μm CMOS technology with 1.8V power supply is presented in this paper. In addition to linearizing the device response, the proposed system is also capable to correct offset and gain errors. The building blocks conforming the adaptive system are designed and experimentally characterized to generate numerical high-level models which are used to verify the proper performance of each analog block within a defined multilayer perceptron architecture. The network weights, obtained from the learning phase, are stored in a microcontroller EEPROM memory, and then loaded into each of the registers of the proposed integrated prototype. In order to verify the proposed system performance, the non-linear characteristic of a thermistor is compensated as an application example, achieving a relative error er below 3% within an input span of 130°C, which is almost 6 times less than the uncorrected response. The power consumption of the whole system is 1.4mW and it has an active area of 0.86mm 2 . The digital programmability of the network weights provides flexibility when a sensor change is required

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area
    • …
    corecore