548,033 research outputs found

    Evolutionary optimization within an intelligent hybrid system for design integration

    Get PDF
    An intelligent hybrid approach has been developed to integrate various stages in total design, including formulation of product design specifications, conceptual design, detail design, and manufacture. The integration is achieved by blending multiple artificial intelligence (AI) techniques and CAD/CAE/CAM into a single environment. It has been applied into power transmission system design. In addition to knowledge-based systems and artificial neural networks, another AI technique, genetic algorithms (GAs), are involved in the approach. The GA is used to conduct optimization tasks: (1) searching the best combination of design parameters to obtain optimum design of gears, and (2) optimization of the architecture of the artificial neural networks used in the hybrid system. In this paper, after a brief overview of the intelligent hybrid system, the GA applications are described in detail

    Paradigms of Intelligent Systems

    Get PDF
    This paper approaches the subject of paradigms for the categories of intelligent systems. First we can look at the term paradigm in its scientific meaning and then we make acquaintance with the main categories of intelligent systems (expert systems, intelligent systems based on genetic algorithms, artificial neuronal systems, fuzzy systems, hybrid intelligent systems). We will see that every system has one or more paradigms, but hybrid intelligent systems combine paradigms because they are made of different technologies. This research has been made under the guidance of Dr. Ioan AND ONE, Professor and Director of Research Laboratory.paradigm, intelligent systems, expert systems, genetic algorithms, fuzzy systems, artificial neuronal networks, hybrid intelligent systems

    Artificial Intelligence in the Context of Human Consciousness

    Get PDF
    Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence attempts to simulate these functions through techniques like artificial neural networks, Markov Decision Processes, Human Language Technology, and Multi-Agent Systems, which rely upon a combination of mathematical models and hardware

    Making Math Searchable in Wikipedia

    Get PDF
    Wikipedia, the world largest encyclopedia contains a lot of knowledge that is expressed as formulae exclusively. Unfortunately, this knowledge is currently not fully accessible by intelligent information retrieval systems. This immense body of knowledge is hidden form value-added services, such as search. In this paper, we present our MathSearch implementation for Wikipedia that enables users to perform a combined text and fully unlock the potential benefits.Comment: 7 pages, 2 figures, Conference on Intelligent Computer Mathematics, July 9-14 2012, Bremen, Germany. To be published in Lecture Notes, Artificial Intelligence, Springe

    Why it is important to build robots capable of doing science

    Get PDF
    Science, like any other cognitive activity, is grounded in the sensorimotor interaction of our bodies with the environment. Human embodiment thus constrains the class of scientific concepts and theories which are accessible to us. The paper explores the possibility of doing science with artificial cognitive agents, in the framework of an interactivist-constructivist cognitive model of science. Intelligent robots, by virtue of having different sensorimotor capabilities, may overcome the fundamental limitations of human science and provide important technological innovations. Mathematics and nanophysics are prime candidates for being studied by artificial scientists
    corecore