3,615 research outputs found

    Haptic Experience and the Design of Drawing Interfaces

    Get PDF
    Haptic feedback has the potential to enhance usersā€™ sense of being engaged and creative in their artwork. Current work on providing haptic feedback in computer-based drawing applications has focused mainly on the realism of the haptic sensation rather than the usersā€™ experience of that sensation in the context of their creative work. We present a study that focuses on user experience of three haptic drawing interfaces. These interfaces were based on two different haptic metaphors, one of which mimicked familiar drawing tools (such as pen, pencil or crayon on smooth or rough paper) and the other of which drew on abstract descriptors of haptic experience (roughness, stickiness, scratchiness and smoothness). It was found that users valued having control over the haptic sensation; that each metaphor was preferred by approximately half of the participants; and that the real world metaphor interface was considered more helpful than the abstract one, whereas the abstract interface was considered to better support creativity. This suggests that future interfaces for artistic work should have user-modifiable interaction styles for controlling the haptic sensation

    Weaving Lighthouses and Stitching Stories: Blind and Visually Impaired People Designing E-textiles

    Get PDF
    We describe our experience of working with blind and visually impaired people to create interactive art objects that are personal to them, through a participatory making process using electronic textiles (e-textiles) and hands-on crafting techniques. The research addresses both the practical considerations about how to structure hands-on making workshops in a way which is accessible to participants of varying experience and abilities, and how effective the approach was in enabling participants to tell their own stories and feel in control of the design and making process. The results of our analysis is the offering of insights in how to run e-textile making sessions in such a way for them to be more accessible and inclusive to a wider community of participants

    Art and Design Practices as a Driver for Deformable Controls, Textures and Screen Interactions

    Get PDF
    In this thesis, we demonstrate the innovative uses of deformable interfaces to help de-velop future digital art and design interactions. The great beneļ¬ts of advancing digital art can often come at a cost of tactile feeling and physical expression, while traditional methods celebrate the diverse sets of physical tools and materials. We identiļ¬ed these sets of tools and materials to inform the development of new art and design interfaces that offer rich physical mediums for digital artist and designers. In order to bring forth these unique inter-actions, we draw on the latest advances in deformable interface technology. Therefore, our research contributes a set of understandings about how deformable interfaces can be har-nessed for art and design interfaces. We identify and discuss the following contributions: insights into tangible and digital practices of artists and designers; prototypes to probe the beneļ¬ts and possibilities of deformable displays and materials in support of digital-physical art and design, user-centred evaluations of these prototypes to inform future developments, and broader insights into the deformable interface research.Each chapter of this thesis investigates a speciļ¬c element of art and design, alongside an aspect of deformable interfaces resulting in a new prototype. We begin the thesis by studying the use of physical actuation to simulate artist tools in deformable surfaces. In this chapter, our evaluations highlight the merits of improved user experiences and insights into eyes-free interactions. We then turn to explore deformable textures. Driven by the tactile feeling of mixing paints, we present a gel-based interface that is capable of simulating the feeling of paints on the back of mobile devices. Our evaluations showed how artists endorsed the interactions and held potential for digital oil painting.Our ļ¬nal chapter presents research conducted with digital designers. We explore their colour picking processes and developed a digital version of physical swatches using a mod-ular screen system. This use of tangible proxies in digital-based processes brought a level of playfulness and held potential to support collaborative workļ¬‚ows across disciplines. To conclude, we share how our outcomes from these studies could help shape the broader space of art and design interactions and deformable interface research. We suggest future work and directions based on our ļ¬ndings

    To ā€œSketch-a-Scratchā€

    Get PDF
    A surface can be harsh and raspy, or smooth and silky, and everything in between. We are used to sense these features with our fingertips as well as with our eyes and ears: the exploration of a surface is a multisensory experience. Tools, too, are often employed in the interaction with surfaces, since they augment our manipulation capabilities. ā€œSketch-a-Scratchā€ is a tool for the multisensory exploration and sketching of surface textures. The userā€™s actions drive a physical sound model of real materialsā€™ response to interactions such as scraping, rubbing or rolling. Moreover, different input signals can be converted into 2D visual surface profiles, thus enabling to experience them visually, aurally and haptically

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright Ā© 2012 John Wiley & Sons, Ltd

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance usersā€™ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare peopleā€™s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interactionā€™s performance in virtual and real environments and pointed out which aspect influences usersā€™ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a userā€™s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makersā€™ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designersā€™ capabilities
    • ā€¦
    corecore