6,343 research outputs found

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Encoding TLA+ set theory into many-sorted first-order logic

    Get PDF
    We present an encoding of Zermelo-Fraenkel set theory into many-sorted first-order logic, the input language of state-of-the-art SMT solvers. This translation is the main component of a back-end prover based on SMT solvers in the TLA+ Proof System

    On the expressive power of planar perfect matching and permanents of bounded treewidth matrices

    Get PDF
    Valiant introduced some 25 years ago an algebraic model of computation along with the complexity classes VP and VNP, which can be viewed as analogues of the classical classes P and NP. They are defined using non-uniform sequences of arithmetic circuits and provides a framework to study the complexity for sequences of polynomials. Prominent examples of difficult (that is, VNP-complete) problems in this model includes the permanent and hamiltonian polynomials. While the permanent and hamiltonian polynomials in general are difficult to evaluate, there have been research on which special cases of these polynomials admits efficient evaluation. For instance, Barvinok has shown that if the underlying matrix has bounded rank, both the permanent and the hamiltonian polynomials can be evaluated in polynomial time, and thus are in VP. Courcelle, Makowsky and Rotics have shown that for matrices of bounded treewidth several difficult problems (including evaluating the permanent and hamiltonian polynomials) can be solved efficiently. An earlier result of this flavour is Kasteleyn's theorem which states that the sum of weights of perfect matchings of a planar graph can be computed in polynomial time, and thus is in VP also. For general graphs this problem is VNP-complete. In this paper we investigate the expressive power of the above results. We show that the permanent and hamiltonian polynomials for matrices of bounded treewidth both are equivalent to arithmetic formulas. Also, arithmetic weakly skew circuits are shown to be equivalent to the sum of weights of perfect matchings of planar graphs.Comment: 14 page

    Torsion homology and regulators of isospectral manifolds

    Get PDF
    Given a finite group G, a G-covering of closed Riemannian manifolds, and a so-called G-relation, a construction of Sunada produces a pair of manifolds M_1 and M_2 that are strongly isospectral. Such manifolds have the same dimension and the same volume, and their rational homology groups are isomorphic. We investigate the relationship between their integral homology. The Cheeger-Mueller Theorem implies that a certain product of orders of torsion homology and of regulators for M_1 agrees with that for M_2. We exhibit a connection between the torsion in the integral homology of M_1 and M_2 on the one hand, and the G-module structure of integral homology of the covering manifold on the other, by interpreting the quotients Reg_i(M_1)/Reg_i(M_2) representation theoretically. Further, we prove that the p-primary torsion in the homology of M_1 is isomorphic to that of M_2 for all primes p not dividing #G. For p <= 71, we give examples of pairs of isospectral hyperbolic 3-manifolds for which the p-torsion homology differs, and we conjecture such examples to exist for all primes p.Comment: 21 pages; minor changes; included a data file; to appear in J. Topolog
    • …
    corecore